RESUMO
This study explores a novel therapeutic approach for spinal bulbar muscular atrophy (SBMA), a neurodegenerative disorder caused by a mutation in the Androgen Receptor (AR) gene. The aim is to investigate the potential of CRISPR-Cas9 technology in targeting the mutant AR gene to inhibit its production. The objectives include assessing the accuracy and efficacy of CRISPR-Cas9 guided RNAs in silencing the mutant gene and evaluating the feasibility of this approach as a treatment for SBMA. Computational and in-silico approaches are used to evaluate the feasibility of using CRISPR-Cas9 technology for treating SBMA. Computational analysis is used to design CRISPR-Cas9 guided RNAs targeting the mutant AR gene, assessing their on-target and off-target scores, GC content, and structural accuracy. In-silico simulations predict the potential therapeutic outcomes of the CRISPR-Cas9 approach in an artificial environment. Three guided RNA (gRNA) sequences were designed using the CHOPCHOP tool, targeting specific regions of the AR gene with high efficiency and 100% match. These gRNAs demonstrated effective targeting with minimal off-target scores and optimal GC content. Additionally, lentiCRISPR v2 plasmids were designed for the delivery of CRISPR materials, enabling high-efficiency multiplex genome editing of the AR gene. Thermodynamic ensemble predictions indicated favorable secondary structure stability of the designed gRNAs, further supporting their suitability for gene editing. The evaluation of designed gRNAs confirmed their strong binding ability to the target sequences, validating their potential as effective tools for genome editing. The study highlights the potential of CRISPR-Cas9 technology for targeting the Androgen Receptor gene associated with spinal bulbar muscular atrophy (SBMA). The findings support the feasibility of this approach for gene editing and suggest further exploration in preclinical and clinical settings. Recommendations include continued research to optimize CRISPR-Cas9 delivery methods and enhance specificity for therapeutic applications in SBMA.
Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Receptores Androgênicos , Sistemas CRISPR-Cas/genética , Humanos , RNA Guia de Sistemas CRISPR-Cas/genética , Receptores Androgênicos/genética , Inativação Gênica , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/terapia , Simulação por Computador , Mutação/genética , Sequência de Bases , Edição de Genes/métodosRESUMO
Aloe barbadensis is a stemless plant with a length of 60-100 cm with juicy leaves which is used for its remedial and healing properties in different suburbs of various countries. The present study was conducted to investigate the effect of A. barbadensis leaf extract (aqueous and ethanolic) in yeast induced pyrexia and acetic acid induced writhing in rat model to evaluate the antipyretic biomarkers and its phytochemical screening with computational analysis. For analgesic activity model 60 Albino rats (160-200 kg) were divided into four groups. Of the 4 groups, control consisted of 6 rats (Group I) treated with normal saline, standard comprised of 6 rats treated with drug diclofenac (Group I). Experimental groups consisted of 48 rats, treated with A. barbadensis ethanolic and aqueous leaf extracts at doses of 50 mg/kg, 100 mg/kg, 200 mg/kg, and 400 mg/kg (Group III. IV). For antipyretic activity group division was same as in analgesic activity. All groups were treated the same as in the analgesic activity except for the second group which was treated with paracetamol. In both antipyretic and analgesic activity at the dose of 400 mg/kg, group III showed significant inhibition. TNF-α and IL-6 showed significant antipyretic activity at a dose of 400 mg/kg. For molecular docking aloe emodin and cholestanol were used as ligand molecules to target proteins Tnf-α and IL-6. Acute oral toxicity study was performed. There was no mortality even at the dose of 2000 mg/kg. Quantitative and qualitative phytochemical screening was performed for the detection of various phytochemicals. Hence, A. barbadensis leaf extracts can be used in the form of medicine for the treatment of pain and fever.
Assuntos
Aloe , Antipiréticos , Ratos , Animais , Antipiréticos/química , Antipiréticos/farmacologia , Antipiréticos/uso terapêutico , Fator de Necrose Tumoral alfa , Extratos Vegetais/química , Aloe/química , Interleucina-6 , Simulação de Acoplamento Molecular , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Saccharomyces cerevisiae , Etanol , Compostos Fitoquímicos , Folhas de PlantaRESUMO
This study aims to detect salt stress-related genes and mechanisms of the wild barley Hordeum spontaneum. Among the generated RNA-Seq datasets, several regulated transcripts are influenced by levels of cellular carbon, nitrogen and oxygen. Some of the regulated genes act on photorespiration and ubiquitination processes, as well as promoting plant growth and development under salt stress. One of the genes, encoding alanine:glyoxylate aminotransferase (AGT), participates in signaling transduction and proline biosynthesis, while the gene encoding asparagine synthetase (ASN) influences nitrogen storage and transport in plants under stress. Meanwhile, the gene encoding glutamate dehydrogenase (GDH) promotes shoot and root biomass production as well as nitrate assimilation. The upregulated genes encoding alpha-aminoadipic semialdehyde synthase (AASAS) and small auxin-up RNA 40 (SAUR40) participate in the production of proline and signaling compounds, respectively, while the gene encoding E3 ubiquitin-protein ligase regulates the carbon/nitrogen-nutrient response and pathogen resistance, in addition to some physiological processes under biotic and abiotic stresses via signal transduction. The gene encoding the tetratricopeptide repeat (TPR)-domain suppressor of STIMPY (TSS) negatively regulates the carbon level in the cell. In conclusion, this study sheds light on possible molecular mechanisms underlying salt stress tolerance in wild barley that can be utilized further in genomics-based breeding programs of cultivated species.
RESUMO
Moringa oleifera (or the miracle tree) is a wild plant species widely grown for its seed pods and leaves, and is used in traditional herbal medicine. The metagenomic whole genome shotgun sequencing (mWGS) approach was used to characterize antibiotic resistance genes (ARGs) of the rhizobiomes of this wild plant and surrounding bulk soil microbiomes and to figure out the chance and consequences for highly abundant ARGs, e.g., mtrA, golS, soxR, oleC, novA, kdpE, vanRO, parY, and rbpA, to horizontally transfer to human gut pathogens via mobile genetic elements (MGEs). The results indicated that abundance of these ARGs, except for golS, was higher in rhizosphere of M. oleifera than that in bulk soil microbiome with no signs of emerging new soil ARGs in either soil type. The most highly abundant metabolic processes of the most abundant ARGs were previously detected in members of phyla Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, and Firmicutes. These processes refer to three resistance mechanisms namely antibiotic efflux pump, antibiotic target alteration and antibiotic target protection. Antibiotic efflux mechanism included resistance-nodulation-cell division (RND), ATP-binding cassette (ABC), and major facilitator superfamily (MFS) antibiotics pumps as well as the two-component regulatory kdpDE system. Antibiotic target alteration included glycopeptide resistance gene cluster (vanRO), aminocoumarin resistance parY, and aminocoumarin self-resistance parY. While, antibiotic target protection mechanism included RbpA bacterial RNA polymerase (rpoB)-binding protein. The study supports the claim of the possible horizontal transfer of these ARGs to human gut and emergence of new multidrug resistant clinical isolates. Thus, careful agricultural practices are required especially for plants used in circles of human nutrition industry or in traditional medicine.
RESUMO
Since ancient times, seaweeds have been employed as source of highly bioactive secondary metabolites that could act as key medicinal components. Furthermore, research into the biological activity of certain seaweed compounds has progressed significantly, with an emphasis on their composition and application for human and animal nutrition. Seaweeds have many uses: they are consumed as fodder, and have been used in medicines, cosmetics, energy, fertilizers, and industrial agar and alginate biosynthesis. The beneficial effects of seaweed are mostly due to the presence of minerals, vitamins, phenols, polysaccharides, and sterols, as well as several other bioactive compounds. These compounds seem to have antioxidant, anti-inflammatory, anti-cancer, antimicrobial, and anti-diabetic activities. Recent advances and limitations for seaweed bioactive as a nutraceutical in terms of bioavailability are explored in order to better comprehend their therapeutic development. To further understand the mechanism of action of seaweed chemicals, more research is needed as is an investigation into their potential usage in pharmaceutical companies and other applications, with the ultimate objective of developing sustainable and healthier products. The objective of this review is to collect information about the role of seaweeds on nutritional, pharmacological, industrial, and biochemical applications, as well as their impact on human health.
Assuntos
Alga Marinha , Animais , Antioxidantes/farmacologia , Suplementos Nutricionais , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Polissacarídeos/química , Polissacarídeos/farmacologia , Alga Marinha/químicaRESUMO
Legumes are an imperative source of food and proteins across the globe. They also improve soil fertility through symbiotic nitrogen fixation (SNF). Genome editing (GE) is now a novel way of developing desirable traits in legume crops. Genome editing tools like clustered regularly interspaced short palindromic repeats (CRISPR) system permits a defined genome alteration to improve crop performance. This genome editing tool is reliable, cost-effective, and versatile, and it has to deepen in terms of use compared to other tools. Recently, many novel variations have drawn the attention of plant geneticists, and efforts are being made to develop trans-gene-free cultivars for ensuring biosafety measures. This review critically elaborates on the recent development in genome editing of major legumes crops. We hope this updated review will provide essential informations for the researchers working on legumes genome editing. In general, the CRISPR/Cas9 novel GE technique can be integrated with other techniques like omics approaches and next-generation tools to broaden the range of gene editing and develop any desired legumes traits. Regulatory ethics of CRISPR/Cas9 are also discussed.