Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 13(3): 368-374, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38457274

RESUMO

Producing backbone degradable copolymers via free-radical copolymerization is a promising, yet challenging method to develop more sustainable materials for many applications. In this work, we present the copolymerization of 2-methylen-1,3-dioxepane (MDO) with crotonic acid derivative esters. MDO can copolymerize by radical ring-opening polymerization incorporating degradable ester moieties in the polymer backbone, although this can often be difficult due to the very unfavorable reactivity ratios. Crotonic acid derivatives, on the other hand, can be easily produced completely from biomass but are typically very difficult to (co)polymerize due to low propagation rates and very unfavorable reactivity ratios. Herein, we present the surprisingly easy copolymerization between MDO and butyl crotonate (BCr), which shows the ability to form alternating copolymers. The alternating nature of the copolymer was characterized by MALDI-TOF and supported by the reactivity ratios calculated experimentally (rMDO = 0.105 and rBCr = 0.017). The alternating nature of the copolymers favored the degradability that could be achieved under basic conditions (in 2 h, all chains have molar masses smaller than 2 kg/mol). Last, the work was expanded to other crotonate monomers to expand the portfolio and show the potential of this copolymer family.

2.
ACS Appl Polym Mater ; 6(2): 1236-1244, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38299122

RESUMO

The increasing demands for sustainable energy storage technologies have prompted extensive research in the development of eco-friendly materials for lithium-ion batteries (LIBs). This research article presents the design of biobased latexes, which are fluorine-free and rely on renewable resources, based on isobornyl methacrylate (IBOMA) and 2-octyl acrylate (2OA) to be used as binders in batteries. Three different compositions of latexes were investigated, varying the ratio of IBOMA and 2OA: (1) Poly2OA homopolymer, (2) Poly(2OA0,6-co-IBOMA0,4) random copolymer, and (3) PolyIBOMA homopolymer. The combination of the two monomers provided a balance between rigidity from the hard monomer (IBOMA) and flexibility from the soft one (2OA). The study evaluated the performance of the biobased latexes using sodium carboxymethyl cellulose (CMC) as a thickener and cobinder by fabricating LiNi0.8Mn0.1Co0.1O2 (NMC 811) cathodes. Also, to compare with the state of the art, organic processed PVDF electrodes were prepared. Among aqueous slurries, rheological analysis showed that the CMC + Poly(2OA0,6-co-IBOMA0,4) binder system resulted in the most stable and well-dispersed slurries. Also, the electrodes prepared with this latex demonstrated enhanced adhesion (210 ± 9 N m-1) and reduced cracks compared to other aqueous compositions. Electrochemical characterization revealed that the aqueous processed cathodes using the CMC + Poly(2OA0,6-co-IBOMA0,4) biobased latex displayed higher specific capacities than the control with no latex at high C-rates (100.3 ± 2.1 vs 64.5 ± 0.8 mAh g-1 at 5C) and increased capacity retention after 90 cycles at 0.5C (84% vs 81% for CMC with no latex). Overall, the findings of this study suggest that biobased latexes, specifically the CMC + Poly(2OA0,6-co-IBOMA0,4) composition, are promising as environmentally friendly binders for NMC 811 cathodes, contributing to the broader goal of achieving sustainable energy storage systems.

3.
J Chromatogr A ; 1652: 462363, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34261024

RESUMO

Asymmetric-Flow Field-Flow Fractionation is a very powerful technique for measuring the molar mass distribution of polymers with complex microstructures. The analysis of some samples such as self-crosslinkable latexes requires to directly dissolve the polymer dispersion in the eluent (THF) without drying it, and this work studies the effect of the presence of this water in those analysis. Taking a polystyrene latex as model system, it was observed that the measured molar mass and radius of gyration increased as the concentration of water in the sample increased. This was an effect of a decrease in the compatibility between the solvent mixture (THF and water) and the polymer, which formed aggregates, and could be predicted calculating the polymer-solvent interaction parameter. When the study was extended to poly(methyl methacrylate), poly(n-butyl acrylate) and poly(vinyl acetate) the same general trend was observed, however, the impact of the water was less significant as the hydrophilicity of the polymer increased. Most importantly, if the samples with the highest water content were first dissolved in THF and afterwards dried using MgSO4 the measured molar mass and radius of gyration values were the same as for the reference sample (dried in the oven), providing a method to analyze samples that cannot be dried into a film and remove the negative effect of the water at the same time.


Assuntos
Técnicas de Química Analítica , Fracionamento por Campo e Fluxo , Polímeros , Técnicas de Química Analítica/métodos , Peso Molecular , Polímeros/metabolismo , Solventes , Água
4.
Nanomaterials (Basel) ; 11(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799700

RESUMO

Green electrospinning is a relatively new promising technology in which a polymer (latex) can be spun from an aqueous dispersion with the help of a template polymer. This method is a green, clean and safe technology that is able to spin hydrophobic polymers using water as an electrospinning medium. In this article, a systematic study that investigates the influence of the template polymer molar mass, the total solids content of the initial dispersion and the particle/template ratio is presented. Furthermore, the influence of the surfactant used to stabilize the polymer particles, the surface functionality of the polymer particles and the use of a bimodal particle size distribution on the final fiber morphology is studied for the first time. In green electrospinning, the viscosity of the initial complex blend depends on the amount and molar mass of the template polymer but also on the total solids content of the dispersion to be spun. Thus, both parameters must be carefully taken into account in order to fine-tune the final fiber morphology. Additionally, the particle packing and the surface chemistry of the polymer particles also play an important role in the obtained nanofibers quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA