Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38423984

RESUMO

BACKGROUND: Borolatonin is a potential therapeutic agent for some neuronal diseases such as Alzheimer's disease (AD). Its administration exerts ameliorative effects such as those induced by the equimolar administration of melatonin in behavioral tests on male rats and in neuronal immunohistochemistry assays. OBJECTIVE: In this study, motivated by sex differences in neurobiology and the incidence of AD, the ability of borolatonin to induce changes in female rats was assessed. METHODS: Effects of borolatonin were measured by the evaluation of both behavioral and immunohistopathologic approaches; additionally, its ability to limit amyloid toxicity was determined in vitro. RESULTS: Surprisingly, behavioral changes were similar to those reported in male rats, but not those evaluated by immunoassays regarding neuronal survival; while pro-brain-derived neurotrophic factor (BDNF) immunoreactivity and the limitation of toxicity by amyloid in vitro were observed for the first time. CONCLUSION: Borolatonin administration induced changes in female rats. Differences induced by the administration of borolatonin or melatonin could be related to the differences in the production of steroid hormones in sex dependence. Further studies are required to clarify the possible mechanism and origin of differences in disturbed memory caused by the gonadectomy procedure between male and female rats.

2.
J Inorg Biochem ; 238: 112027, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36345068

RESUMO

Boron-containing compounds (BCC) exert effects on neurons. After the expanding of both the identification and synthesis of new BCC, novel effects in living systems have been reported, many of these involving neuronal action. In this review, the actions of BCC on neurons are described; the effects have been inferred by boron deprivation or addition. Also, the effects can be related to those mediated by interaction on ionic channels, G-protein coupled receptors, or other receptors exerting modification on neuronal behavior. Additionally, BCC have exhibited effects by the modulation of inflammation or oxidative processes. BCC are expanding as drugs. Deprivation of boron sources from the diet shows the role of some natural BCC. However, the observations of several new synthesized compounds suggest their ability to act with attractive potency, efficacy, and long-term action on neuronal receptors or processes related with the origin and evolution of neurodegenerative processes. The details of BCC-target interactions are currently being elucidated in progress, as those observed from BCC-protein crystal complexes. Taking all of the above into account, the expansion is presumably near to having studies on the application of BCC as drugs on specific targets for treating neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Boro , Compostos de Boro/química , Neurônios , Inflamação
3.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328650

RESUMO

Preclinical and clinical evidence supports melatonin and its analogues as potential treatment for diseases involving cognitive deficit such as Alzheimer's disease. In this work, we evaluated by in silico studies a set of boron-containing melatonin analogues on MT1 and MT2 receptors. Then, we synthesized a compound (borolatonin) identified as potent agonist. After chemical characterization, its evaluation in a rat model with cognitive deficit showed that it induced ameliorative effects such as those induced by equimolar administration of melatonin in behavioral tests and in neuronal immunohistochemistry assays. Our results suggest the observed effects are by means of action on the melatonin system. Further studies are required to clarify the mechanism(s) of action, as the beneficial effects on disturbed memory by gonadectomy in male rats are attractive.


Assuntos
Melatonina , Receptor MT1 de Melatonina , Animais , Cognição , Masculino , Melatonina/farmacologia , Melatonina/uso terapêutico , Ratos , Receptor MT1 de Melatonina/agonistas , Receptor MT2 de Melatonina , Triptofano
4.
Curr Alzheimer Res ; 16(10): 871-894, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30963972

RESUMO

Albeit cholinergic depletion remains the key event in Alzheimer's Disease (AD), recent information describes stronger links between monoamines (trace amines, catecholamines, histamine, serotonin, and melatonin) and AD than those known in the past century. Therefore, new drug design strategies focus efforts to translate the scope on these topics and to offer new drugs which can be applied as therapeutic tools in AD. In the present work, we reviewed the state-of-art regarding genetic, neuropathology and neurochemistry of AD involving monoamine systems. Then, we compiled the effects of monoamines found in the brain of mammals as well as the reported effects of their derivatives and some structure-activity relationships. Recent derivatives have triggered exciting effects and pharmacokinetic properties in both murine models and humans. In some cases, the mechanism of action is clear, essentially through the interaction on G-protein-coupled receptors as revised in this manuscript. Additional mechanisms are inhibition of enzymes for their biotransformation, regulation of free-radicals in the central nervous system and others for the effects on Tau phosphorylation or amyloid-beta accumulation. All these data make the monoamines and their derivatives attractive potential elements for AD therapy.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Monoaminas Biogênicas/metabolismo , Desenho de Fármacos , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/uso terapêutico , Animais , Monoaminas Biogênicas/uso terapêutico , Humanos , Receptores Acoplados a Proteínas G/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA