Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 180: 229-242, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33197551

RESUMO

Antimicrobial peptides (AMPs) play an essential role in plant defense against invading pathogens. Due to their biological properties, these molecules have been considered useful for drug development, as novel agents in disease therapeutics, applicable to both agriculture and medicine. New technologies of massive sequencing open opportunities to discover novel AMP encoding genes in wild plant species. This work aimed to identify cysteine-rich AMPs from Peltophorum dubium, a legume tree from South America. We performed whole-transcriptome sequencing of P. dubium seedlings followed by de novo transcriptome assembly, uncovering 78 AMP transcripts classified into five families: hevein-like, lipid-transfer proteins (LTPs), alpha hairpinins, defensins, and snakin/GASA (Giberellic Acid Stimulated in Arabidopsis) peptides. No transcripts with similarity to cyclotide or thionin genes were identified. Genomic DNA analysis by PCR confirmed the presence of 18 genes encoding six putative defensins and 12 snakin/GASA peptides and allowed the characterization of their exon-intron structure. The present work demonstrates that AMP prediction from a wild species is possible using RNA sequencing and de novo transcriptome assembly, regarding a starting point for studies focused on AMP gene evolution and expression. Moreover, this study allowed the detection of strong AMP candidates for drug development and novel biotechnological products.


Assuntos
Fabaceae/química , Genes de Plantas/genética , Genoma de Planta/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Plântula/genética , Plântula/metabolismo , Motivos de Aminoácidos/genética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/classificação , Alinhamento de Sequência , Transcriptoma
2.
Amino Acids ; 50(9): 1245-1259, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29948342

RESUMO

Snakins are antimicrobial peptides (AMPs) found, so far, exclusively in plants, and known to be important in the defense against a wide range of pathogens. Like other plant AMPs, they contain several positively charged amino acids, and an even number of cysteine residues forming disulfide bridges which are considered important for their usual function. Despite its importance, studies on snakin tertiary structure and mode of action are still scarce. In this study, a new snakin-like gene was isolated from the native plant Peltophorum dubium, and its expression was verified in seedlings and adult leaves. The deduced peptide (PdSN1) shows 84% sequence identity with potato snakin-1 mature peptide, with the 12 cysteines characteristic from this peptide family at the GASA domain. The mature PdSN1 coding sequence was successfully expressed in Escherichia coli. The purified recombinant peptide inhibits the growth of important plant and human pathogens, like the economically relevant potato pathogen Streptomyces scabies and the opportunistic fungi Candida albicans and Aspergillus niger. Finally, homology and ab initio modeling techniques coupled to extensive molecular dynamics simulations were used to gain insight on the 3D structure of PdSN1, which exhibited a helix-turn-helix motif conserved in both native and recombinant peptides. We found this motif to be strongly coded in the sequence of PdSN1, as it is stable under different patterns of disulfide bonds connectivity, and even when the 12 cysteines are considered in their reduced form, explaining the previous experimental evidences.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Fabaceae/química , Sequência de Aminoácidos , Aspergillus niger/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Streptomyces/efeitos dos fármacos
3.
Gene ; 601: 1-10, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27923672

RESUMO

Purine transporters as substrate entry points in organisms, are involved in a number of cellular processes such as nitrogen source uptake, energy metabolism and synthesis of nucleic acids. In this study, two nucleobase transporter genes (phZ, phU) from Phanerochaete chrysosporium were cloned, identified, and functionally characterized. Our results show that PhZ is a transporter of adenine and hypoxanthine, and a protein belonging to the AzgA-like family, whilst PhU belongs to the NAT/NCS2 family, transporting xanthine and uric acid. No other sequences belonging to these families were detected in P. chrysosporium's genome. Phylogenetic analyses show that AzgA-like sequences form monophyletic groups for each major lineage (Ascomycota, Basidiomycota and Zygomycota). In contrast, Ascomycota and Basidiomycota NAT/NCS2 sequences do not form monophyletic groups and several copies of this protein are distributed across the tree. Expression of phU was significantly downregulated in the presence of a primary source like ammonium, and enhanced if purines were present or if the mycelium was nitrogen starved. phZ was clearly induced by its substrates (hypoxanthine, adenine), very lightly induced by xanthine, suppressed by urea and amino acids and expressed at a basal level when uric acid or ammonium was the nitrogen source or when the mycelium was starved for nitrogen. In order to perform substrate analyses, both P. chrysosporium proteins (PhZ, PhU) were expressed in Aspergillus nidulans. Epifluorescent microscopy showed that under inducing conditions, PhZ-GFP and PhU-GFP were present at the plasma membrane of A. nidulans transformed strains, and were internalized in repressed conditions. Our results suggest that in the white-rot fungus P. chrysosporium, phU has a catabolic role and phZ, (less dependent of the nitrogen source), plays a key role in purine acquisition to provide biosynthetic components. These are the first purine transporters characterized in Basidiomycota.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Phanerochaete/genética , Phanerochaete/metabolismo , Purinas/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Clonagem Molecular , Expressão Gênica , Genes Fúngicos , Filogenia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA