Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Viruses ; 16(5)2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38793609

RESUMO

Dengue virus (DENV) is a continuing global threat that puts half of the world's population at risk for infection. This mosquito-transmitted virus is endemic in over 100 countries. When a mosquito takes a bloodmeal, virus is deposited into the epidermal and dermal layers of human skin, infecting a variety of permissive cells, including keratinocytes, Langerhans cells, macrophages, dermal dendritic cells, fibroblasts, and mast cells. In response to infection, the skin deploys an array of defense mechanisms to inhibit viral replication and prevent dissemination. Antimicrobial peptides, pattern recognition receptors, and cytokines induce a signaling cascade to increase transcription and translation of pro-inflammatory and antiviral genes. Paradoxically, this inflammatory environment recruits skin-resident mononuclear cells that become infected and migrate out of the skin, spreading virus throughout the host. The details of the viral-host interactions in the cutaneous microenvironment remain unclear, partly due to the limited body of research focusing on DENV in human skin. This review will summarize the functional role of human skin, the cutaneous innate immune response to DENV, the contribution of the arthropod vector, and the models used to study DENV interactions in the cutaneous environment.


Assuntos
Vírus da Dengue , Dengue , Imunidade Inata , Pele , Animais , Humanos , Citocinas/imunologia , Citocinas/metabolismo , Dengue/imunologia , Dengue/virologia , Vírus da Dengue/imunologia , Vírus da Dengue/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Pele/virologia , Pele/imunologia , Replicação Viral , Artrópodes/virologia
2.
J Infect Dis ; 229(4): 1147-1157, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38035792

RESUMO

BACKGROUND: Immune dysregulation in people with human immunodeficiency virus-1 (PWH) persists despite potent antiretroviral therapy and, consequently, PWH tend to have lower immune responses to licensed vaccines. However, limited information is available about the impact of mRNA vaccines in PWH. This study details the immunologic responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines in PWH and their impact on HIV-1. METHODS: We quantified anti-S immunoglobulin G (IgG) binding and neutralization of 3 SARS-CoV-2 variants of concern and complement activation in blood from virally suppressed men with HIV-1 (MWH) and men without HIV-1 (MWOH), and the characteristics that may impact the vaccine immune responses. We also studied antibody levels against HIV-1 proteins and HIV-1 plasma RNA. RESULTS: MWH had lower anti-S IgG binding and neutralizing antibodies against the 3 variants compared to MWOH. MWH also produced anti-S1 antibodies with a 10-fold greater ability to activate complement and exhibited higher C3a blood levels than MWOH. MWH had decreased residual HIV-1 plasma viremia and anti-Nef IgG approximately 100 days after immunization. CONCLUSIONS: MWH respond to SARS-CoV-2 mRNA vaccines with lower antibody titers and with greater activation of complement, while exhibiting a decrease in HIV-1 viremia and anti-Nef antibodies. These results suggest an important role of complement activation mediating protection in MWH.


Assuntos
COVID-19 , Soropositividade para HIV , HIV-1 , Masculino , Humanos , Vacinas contra COVID-19 , Viremia , SARS-CoV-2 , Vacinas de mRNA , COVID-19/prevenção & controle , Ativação do Complemento , Anticorpos Neutralizantes , Imunoglobulina G , Anticorpos Antivirais
3.
iScience ; 26(10): 107830, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766976

RESUMO

Highly pathogenic avian influenza A H5N1 viruses cause high mortality in humans and have pandemic potential. Effective vaccines and treatments against this threat are urgently needed. Here, we have refined our previously established model of lethal H5N1 infection in cynomolgus macaques. An inhaled aerosol virus dose of 5.1 log10 plaque-forming unit (pfu) induced a strong febrile response and acute respiratory disease, with four out of six macaques succumbing after challenge. Vaccination with three doses of adjuvanted seasonal quadrivalent influenza vaccine elicited low but detectable neutralizing antibody to H5N1. All six vaccinated macaques survived four times the 50% lethal dose of aerosolized H5N1, while four of six unvaccinated controls succumbed to disease. Although vaccination did not protect against severe influenza, vaccinees had reduced respiratory dysfunction and lower viral load in airways compared to controls. We anticipate that our macaque model will play a vital role in evaluating vaccines and antivirals against influenza pandemics.

4.
Nat Commun ; 14(1): 1914, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024448

RESUMO

The immunopathological mechanisms driving the development of severe COVID-19 remain poorly defined. Here, we utilize a rhesus macaque model of acute SARS-CoV-2 infection to delineate perturbations in the innate immune system. SARS-CoV-2 initiates a rapid infiltration of plasmacytoid dendritic cells into the lower airway, commensurate with IFNA production, natural killer cell activation, and a significant increase of blood CD14-CD16+ monocytes. To dissect the contribution of lung myeloid subsets to airway inflammation, we generate a longitudinal scRNA-Seq dataset of airway cells, and map these subsets to corresponding populations in the human lung. SARS-CoV-2 infection elicits a rapid recruitment of two macrophage subsets: CD163+MRC1-, and TREM2+ populations that are the predominant source of inflammatory cytokines. Treatment with baricitinib (Olumiant®), a JAK1/2 inhibitor is effective in eliminating the influx of non-alveolar macrophages, with a reduction of inflammatory cytokines. This study delineates the major lung macrophage subsets driving airway inflammation during SARS-CoV-2 infection.


Assuntos
COVID-19 , Animais , Humanos , Macaca mulatta , SARS-CoV-2 , Macrófagos , Inflamação , Citocinas , Glicoproteínas de Membrana , Receptores Imunológicos
5.
Nat Commun ; 13(1): 4696, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982054

RESUMO

Mutations in the spike glycoproteins of SARS-CoV-2 variants of concern have independently been shown to enhance aspects of spike protein fitness. Here, we describe an antibody fragment (VH ab6) that neutralizes all major variants including the recently emerged BA.1 and BA.2 Omicron subvariants, with a unique mode of binding revealed by cryo-EM studies. Further, we provide a comparative analysis of the mutational effects within previously emerged variant spikes and identify the structural role of mutations within the NTD and RBD in evading antibody neutralization. Our analysis shows that the highly mutated Gamma N-terminal domain exhibits considerable structural rearrangements, partially explaining its decreased neutralization by convalescent sera. Our results provide mechanistic insights into the structural, functional, and antigenic consequences of SARS-CoV-2 spike mutations and highlight a spike protein vulnerability that may be exploited to achieve broad protection against circulating variants.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/terapia , Epitopos/genética , Humanos , Imunização Passiva , Testes de Neutralização , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Soroterapia para COVID-19
6.
iScience ; 25(8): 104798, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35875685

RESUMO

The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics with high neutralization breadth. Here, we characterized a human VH domain, F6, which we generated by sequentially panning large phage-displayed VH libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized VH domain, resulted in a construct (F6-ab8-Fc) that broadly and potently neutralized VOCs including Omicron. Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 variants including Omicron and highlight a vulnerable epitope within the spike that may be exploited to achieve broad protection against circulating variants.

7.
J Infect Dis ; 226(5): 766-777, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35267024

RESUMO

BACKGROUND: Excessive complement activation has been implicated in the pathogenesis of coronavirus disease 2019 (COVID-19), but the mechanisms leading to this response remain unclear. METHODS: We measured plasma levels of key complement markers, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antibodies against SARS-CoV-2 and seasonal human common cold coronaviruses (CCCs) in hospitalized patients with COVID-19 of moderate (n = 18) and critical severity (n = 37) and in healthy controls (n = 10). RESULTS: We confirmed that complement activation is systemically increased in patients with COVID-19 and is associated with a worse disease outcome. We showed that plasma levels of C1q and circulating immune complexes were markedly increased in patients with severe COVID-19 and correlated with higher immunoglobulin (Ig) G titers, greater complement activation, and higher disease severity score. Additional analyses showed that the classical pathway was the main arm responsible for augmented complement activation in severe patients. In addition, we demonstrated that a rapid IgG response to SARS-CoV-2 and an anamnestic IgG response to the nucleoprotein of the CCCs were strongly correlated with circulating immune complex levels, complement activation, and disease severity. CONCLUSIONS: These findings indicate that early, nonneutralizing IgG responses may play a key role in complement overactivation in severe COVID-19. Our work underscores the urgent need to develop therapeutic strategies to modify complement overactivation in patients with COVID-19.


Assuntos
COVID-19 , Anticorpos Antivirais , Proteínas do Nucleocapsídeo de Coronavírus , Humanos , Imunoglobulina G , SARS-CoV-2
8.
PLoS Pathog ; 18(3): e1010395, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35271686

RESUMO

Severe influenza kills tens of thousands of individuals each year, yet the mechanisms driving lethality in humans are poorly understood. Here we used a unique translational model of lethal H5N1 influenza in cynomolgus macaques that utilizes inhalation of small-particle virus aerosols to define mechanisms driving lethal disease. RNA sequencing of lung tissue revealed an intense interferon response within two days of infection that resulted in widespread expression of interferon-stimulated genes, including inflammatory cytokines and chemokines. Macaques with lethal disease had rapid and profound loss of alveolar macrophages (AMs) and infiltration of activated CCR2+ CX3CR1+ interstitial macrophages (IMs) and neutrophils into lungs. Parallel changes of AMs and neutrophils in bronchoalveolar lavage (BAL) correlated with virus load when compared to macaques with mild influenza. Both AMs and IMs in lethal influenza were M1-type inflammatory macrophages which expressed neutrophil chemotactic factors, while neutrophils expressed genes associated with activation and generation of neutrophil extracellular traps (NETs). NETs were prominent in lung and were found in alveolar spaces as well as lung parenchyma. Genes associated with pyroptosis but not apoptosis were increased in lung, and activated inflammatory caspases, IL-1ß and cleaved gasdermin D (GSDMD) were present in bronchoalveolar lavage fluid and lung homogenates. Cleaved GSDMD was expressed by lung macrophages and alveolar epithelial cells which were present in large numbers in alveolar spaces, consistent with loss of epithelial integrity. Cleaved GSDMD colocalized with viral NP-expressing cells in alveoli, reflecting pyroptosis of infected cells. These novel findings reveal that a potent interferon and inflammatory cascade in lung associated with infiltration of inflammatory macrophages and neutrophils, elaboration of NETs and cell death by pyroptosis mediates lethal H5N1 influenza in nonhuman primates, and by extension humans. These innate pathways represent promising therapeutic targets to prevent severe influenza and potentially other primary viral pneumonias in humans.


Assuntos
Virus da Influenza A Subtipo H5N1 , Infecções por Orthomyxoviridae , Animais , Interferons/imunologia , Pulmão , Macrófagos Alveolares/imunologia , Neutrófilos/imunologia , Infecções por Orthomyxoviridae/imunologia , Primatas , Piroptose
9.
bioRxiv ; 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35194603

RESUMO

The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics that are effective against a variety of strains of the virus. Herein, we characterize a human V H domain, F6, which we generated by sequentially panning large phage displayed V H libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized V H domain, resulted in a construct (F6-ab8-Fc) that neutralized Omicron pseudoviruses with a half-maximal neutralizing concentration (IC 50 ) of 4.8 nM in vitro . Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 VOCs - including the recently emerged Omicron variant - and highlight a vulnerable epitope within the spike protein RBD that may be exploited to achieve broad protection against circulating variants.

10.
bioRxiv ; 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34642693

RESUMO

The COVID-19 pandemic remains a global health crisis, yet, the immunopathological mechanisms driving the development of severe disease remain poorly defined. Here, we utilize a rhesus macaque (RM) model of SARS-CoV-2 infection to delineate perturbations in the innate immune system during acute infection using an integrated systems analysis. We found that SARS-CoV-2 initiated a rapid infiltration (two days post infection) of plasmacytoid dendritic cells into the lower airway, commensurate with IFNA production, natural killer cell activation, and induction of interferon-stimulated genes. At this early interval, we also observed a significant increase of blood CD14-CD16+ monocytes. To dissect the contribution of lung myeloid subsets to airway inflammation, we generated a novel compendium of RM-specific lung macrophage gene expression using a combination of sc-RNA-Seq data and bulk RNA-Seq of purified populations under steady state conditions. Using these tools, we generated a longitudinal sc-RNA-seq dataset of airway cells in SARS-CoV-2-infected RMs. We identified that SARS-CoV-2 infection elicited a rapid recruitment of two subsets of macrophages into the airway: a C206+MRC1-population resembling murine interstitial macrophages, and a TREM2+ population consistent with CCR2+ infiltrating monocytes, into the alveolar space. These subsets were the predominant source of inflammatory cytokines, accounting for ~75% of IL6 and TNF production, and >90% of IL10 production, whereas the contribution of CD206+MRC+ alveolar macrophages was significantly lower. Treatment of SARS-CoV-2 infected RMs with baricitinib (Olumiant ® ), a novel JAK1/2 inhibitor that recently received Emergency Use Authorization for the treatment of hospitalized COVID-19 patients, was remarkably effective in eliminating the influx of infiltrating, non-alveolar macrophages in the alveolar space, with a concomitant reduction of inflammatory cytokines. This study has delineated the major subsets of lung macrophages driving inflammatory and anti-inflammatory cytokine production within the alveolar space during SARS-CoV-2 infection. ONE SENTENCE SUMMARY: Multi-omic analyses of hyperacute SARS-CoV-2 infection in rhesus macaques identified two population of infiltrating macrophages, as the primary orchestrators of inflammation in the lower airway that can be successfully treated with baricitinib.

11.
PLoS Pathog ; 17(6): e1009674, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34181694

RESUMO

HIV associated immune activation (IA) is associated with increased morbidity in people living with HIV (PLWH) on antiretroviral therapy, and remains a barrier for strategies aimed at reducing the HIV reservoir. The underlying mechanisms of IA have not been definitively elucidated, however, persistent production of Type I IFNs and expression of ISGs is considered to be one of the primary factors. Plasmacytoid DCs (pDCs) are a major producer of Type I IFN during viral infections, and are highly immunomodulatory in acute HIV and SIV infection, however their role in chronic HIV/SIV infection has not been firmly established. Here, we performed a detailed transcriptomic characterization of pDCs in chronic SIV infection in rhesus macaques, and in sooty mangabeys, a natural host non-human primate (NHP) species that undergoes non-pathogenic SIV infection. We also investigated the immunostimulatory capacity of lymph node homing pDCs in chronic SIV infection by contrasting gene expression of pDCs isolated from lymph nodes with those from blood. We observed that pDCs in LNs, but not blood, produced high levels of IFNα transcripts, and upregulated gene expression programs consistent with T cell activation and exhaustion. We apply a novel strategy to catalogue uncharacterized surface molecules on pDCs, and identified the lymphoid exhaustion markers TIGIT and LAIR1 as highly expressed in SIV infection. pDCs from SIV-infected sooty mangabeys lacked the activation profile of ISG signatures observed in infected macaques. These data demonstrate that pDCs are a primary producer of Type I IFN in chronic SIV infection. Further, this study demonstrated that pDCs trafficking to LNs persist in a highly activated state well into chronic infection. Collectively, these data identify pDCs as a highly immunomodulatory cell population in chronic SIV infection, and a putative therapeutic target to reduce immune activation.


Assuntos
Células Dendríticas/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Animais , Cercocebus atys , Perfilação da Expressão Gênica , Macaca mulatta , RNA-Seq , Transcriptoma
12.
JCI Insight ; 5(3)2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-31910161

RESUMO

Dengue virus (DENV) and Zika virus (ZIKV) are closely related mosquito-borne flaviviruses that co-circulate in tropical regions and constitute major threats to global human health. Whether preexisting immunity to one virus affects disease caused by the other during primary or secondary infections is unknown but is critical in preparing for future outbreaks and predicting vaccine safety. Using a human skin explant model, we show that DENV-3 immune sera increased recruitment and infection of Langerhans cells, macrophages, and dermal dendritic cells following inoculation with DENV-2 or ZIKV. Similarly, ZIKV immune sera enhanced infection with DENV-2. Immune sera increased migration of infected Langerhans cells to the dermis and emigration of infected cells out of skin. Heterotypic immune sera increased viral RNA in the dermis almost 10-fold and reduced the amount of virus required to infect a majority of myeloid cells by 100- to 1000-fold. Enhancement was associated with cross-reactive IgG and induction of IL-10 expression and was mediated by both CD32 and CD64 Fcγ receptors. These findings reveal that preexisting heterotypic immunity greatly enhances DENV and ZIKV infection, replication, and spread in human skin. This relevant tissue model will be valuable in assessing the efficacy and risk of dengue and Zika vaccines in humans.


Assuntos
Vírus da Dengue/imunologia , Dengue/imunologia , Pele/virologia , Infecção por Zika virus/imunologia , Zika virus/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Reações Cruzadas/imunologia , Humanos , Soros Imunes
13.
J Virol ; 92(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29118127

RESUMO

Rift Valley Fever (RVF) is an emerging arboviral disease of livestock and humans. Although the disease is caused by a mosquito-borne virus, humans are infected through contact with, or inhalation of, virus-laden particles from contaminated animal carcasses. Some individuals infected with RVF virus (RVFV) develop meningoencephalitis, resulting in morbidity and mortality. Little is known about the pathogenic mechanisms that lead to neurologic sequelae, and thus, animal models that represent human disease are needed. African green monkeys (AGM) exposed to aerosols containing RVFV develop a reproducibly lethal neurological disease that resembles human illness. To understand the disease process and identify biomarkers of lethality, two groups of 5 AGM were infected by inhalation with either a lethal or a sublethal dose of RVFV. Divergence between lethal and sublethal infections occurred as early as 2 days postinfection (dpi), at which point CD8+ T cells from lethally infected AGM expressed activated caspase-3 and simultaneously failed to increase levels of major histocompatibility complex (MHC) class II molecules, in contrast to surviving animals. At 4 dpi, lethally infected animals failed to demonstrate proliferation of total CD4+ and CD8+ T cells, in contrast to survivors. These marked changes in peripheral blood cells occur much earlier than more-established indicators of severe RVF disease, such as granulocytosis and fever. In addition, an early proinflammatory (gamma interferon [IFN-γ], interleukin 6 [IL-6], IL-8, monocyte chemoattractant protein 1 [MCP-1]) and antiviral (IFN-α) response was seen in survivors, while very late cytokine expression was found in animals with lethal infections. By characterizing immunological markers of lethal disease, this study furthers our understanding of RVF pathogenesis and will allow the testing of therapeutics and vaccines in the AGM model.IMPORTANCE Rift Valley Fever (RVF) is an important emerging viral disease for which we lack both an effective human vaccine and treatment. Encephalitis and neurological disease resulting from RVF lead to death or significant long-term disability for infected people. African green monkeys (AGM) develop lethal neurological disease when infected with RVF virus by inhalation. Here we report the similarities in disease course between infected AGM and humans. For the first time, we examine the peripheral immune response during the course of infection in AGM and show that there are very early differences in the immune response between animals that survive infection and those that succumb. We conclude that AGM are a novel and suitable monkey model for studying the neuropathogenesis of RVF and for testing vaccines and therapeutics against this emerging viral pathogen.


Assuntos
Biomarcadores/sangue , Citocinas/sangue , Meningoencefalite/patologia , Febre do Vale de Rift/patologia , Linfócitos T/imunologia , Animais , Anticorpos Antivirais/imunologia , Caspase 3/imunologia , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Genes MHC da Classe II , Humanos , Ativação Linfocitária , Meningoencefalite/imunologia , Meningoencefalite/virologia , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/fisiologia , Vírion/imunologia
14.
J Invest Dermatol ; 138(3): 618-626, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29106931

RESUMO

The skin is the site of dengue virus (DENV) transmission following the bite of an infected mosquito, but the contribution of individual cell types within skin to infection is unknown. We studied the dynamics of DENV infection in human skin explants using quantitative in situ imaging. DENV replicated primarily in the epidermis and induced a transient IFN-α response. DENV infected a wide range of cells, including Langerhans cells, macrophages, dermal dendritic cells, mast cells, fibroblasts, and lymphatic endothelium, but keratinocytes were the earliest targets of infection and made up 60% of infected cells over time. Virus inoculation led to recruitment and infection of Langerhans cells, macrophages, and dermal dendritic cells, and these cells emigrated from skin in increased numbers as a result of infection. DENV induced expression of proinflammatory cytokines and chemokines by infected keratinocytes. Blocking keratinocyte-derived IL-1ß alone reduced infection of Langerhans cells, macrophages, and dermal dendritic cells by 75-90% and reduced the overall number of infected cells in dermis by 65%. These data show that the innate response of infected keratinocytes attracts virus-permissive myeloid cells that inadvertently spread DENV infection. Our findings highlight a role for keratinocytes and their interplay with myeloid cells in dengue.


Assuntos
Comunicação Celular , Vírus da Dengue/fisiologia , Queratinócitos/virologia , Células Mieloides/virologia , Pele/virologia , Movimento Celular , Quimiocina CCL20/fisiologia , Humanos , Interferon-alfa/biossíntese , Interleucina-1/fisiologia , Replicação Viral
15.
Eur J Immunol ; 47(11): 1925-1935, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28667761

RESUMO

The contribution of macrophages in the gastrointestinal tract to disease control or progression in HIV infection remains unclear. To address this question, we analyzed CD163+ macrophages in ileum and mesenteric lymph nodes (LN) from SIV-infected rhesus macaques with dichotomous expression of controlling MHC class I alleles predicted to be SIV controllers or progressors. Infection induced accumulation of macrophages into gut mucosa in the acute phase that persisted in progressors but was resolved in controllers. In contrast, macrophage recruitment to mesenteric LNs occurred only transiently in acute infection irrespective of disease outcome. Persistent gut macrophage accumulation was associated with CD163 expression on α4ß7+ CD16+ blood monocytes and correlated with epithelial damage. Macrophages isolated from intestine of progressors had reduced phagocytic function relative to controllers and uninfected macaques, and the proportion of phagocytic macrophages negatively correlated with mucosal epithelial breach, lamina propria Escherichia coli density, and plasma virus burden. Macrophages in intestine produced low levels of cytokines regardless of disease course, while mesenteric LN macrophages from progressors became increasingly responsive as infection advanced. These data indicate that noninflammatory CD163+ macrophages accumulate in gut mucosa in progressive SIV infection in response to intestinal damage but fail to adequately phagocytose debris, potentially perpetuating their recruitment.


Assuntos
Mucosa Intestinal/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Animais , Movimento Celular/imunologia , Progressão da Doença , Linfonodos/imunologia , Macaca mulatta , Vírus da Imunodeficiência Símia
16.
J Immunol ; 198(4): 1616-1626, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28062701

RESUMO

Human infections with highly pathogenic avian influenza A (H5N1) virus are frequently fatal but the mechanisms of disease remain ill-defined. H5N1 infection is associated with intense production of proinflammatory cytokines, but whether this cytokine storm is the main cause of fatality or is a consequence of extensive virus replication that itself drives disease remains controversial. Conventional intratracheal inoculation of a liquid suspension of H5N1 influenza virus in nonhuman primates likely results in efficient clearance of virus within the upper respiratory tract and rarely produces severe disease. We reasoned that small particle aerosols of virus would penetrate the lower respiratory tract and blanket alveoli where target cells reside. We show that inhalation of aerosolized H5N1 influenza virus in cynomolgus macaques results in fulminant pneumonia that rapidly progresses to acute respiratory distress syndrome with a fatal outcome reminiscent of human disease. Molecular imaging revealed intense lung inflammation coincident with massive increases in proinflammatory proteins and IFN-α in distal airways. Aerosolized H5N1 exposure decimated alveolar macrophages, which were widely infected and caused marked influx of interstitial macrophages and neutrophils. Extensive infection of alveolar epithelial cells caused apoptosis and leakage of albumin into airways, reflecting loss of epithelial barrier function. These data establish inhalation of aerosolized virus as a critical source of exposure for fatal human infection and reveal that direct viral effects in alveoli mediate H5N1 disease. This new nonhuman primate model will advance vaccine and therapeutic approaches to prevent and treat human disease caused by highly pathogenic avian influenza viruses.


Assuntos
Virus da Influenza A Subtipo H5N1/fisiologia , Infecções por Orthomyxoviridae/virologia , Pneumonia Viral/virologia , Alvéolos Pulmonares/virologia , Síndrome do Desconforto Respiratório/virologia , Replicação Viral , Aerossóis , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , Células Cultivadas , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Imunidade Inata/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Pulmão/imunologia , Pulmão/virologia , Macaca fascicularis , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Macrófagos Alveolares/virologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/fisiopatologia , Pneumonia Viral/imunologia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/fisiopatologia
17.
Eur J Immunol ; 46(2): 446-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26549608

RESUMO

The relationship between recruitment of mononuclear phagocytes to lymphoid and gut tissues and disease in HIV and SIV infection remains unclear. To address this question, we conducted cross-sectional analyses of dendritic cell (DC) subsets and CD163(+) macrophages in lymph nodes (LNs) and ileum of rhesus macaques with acute and chronic SIV infection and AIDS. In LNs significant differences were only evident when comparing uninfected and AIDS groups, with loss of myeloid DCs and CD103(+) DCs from peripheral and mesenteric LNs, respectively, and accumulation of plasmacytoid DCs and macrophages in mesenteric LNs. In contrast, there were fourfold more macrophages in ileum lamina propria in macaques with AIDS compared with chronic infection, and this increased to 40-fold in Peyer's patches. Gut macrophages exceeded plasmacytoid DCs and CD103(+) DCs by ten- to 17-fold in monkeys with AIDS but were at similar low frequencies as DCs in chronic infection. Gut macrophages in macaques with AIDS expressed IFN-α and TNF-α consistent with cell activation. CD163(+) macrophages also accumulated in gut mucosa in acute infection but lacked expression of IFN-α and TNF-α. These data reveal a relationship between inflammatory macrophage accumulation in gut mucosa and disease and suggest a role for macrophages in AIDS pathogenesis.


Assuntos
Síndrome da Imunodeficiência Adquirida/imunologia , Células Dendríticas/imunologia , Mucosa Intestinal/imunologia , Macaca mulatta , Macrófagos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Doença Aguda , Animais , Movimento Celular , Células Cultivadas , Doença Crônica , Estudos Transversais , Células Dendríticas/virologia , Humanos , Interferon-alfa/metabolismo , Macrófagos/virologia , Fator de Necrose Tumoral alfa/metabolismo
18.
J Immunol ; 195(7): 3284-92, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26297760

RESUMO

Impaired T cell responses are a defining characteristic of HIV infection, but the extent to which altered mononuclear phagocyte function contributes to this defect is unclear. We show that mononuclear phagocytes enriched from rhesus macaque lymph nodes have suppressed ability to stimulate CD4 T cell proliferation and IFN-γ release after acute SIV infection. When individual populations were isolated, myeloid dendritic cells (mDC) and macrophages but not plasmacytoid DC (pDC) had suppressed capacity to stimulate CD4 T cell proliferation, with macrophage function declining as infection progressed. Macrophages, but not pDC or mDC, had suppressed capacity to induce IFN-γ release from CD4 T cells in acute infection, even after stimulation with virus-encoded TLR7/8 ligand. Changes in expression of costimulatory molecules did not explain loss of function postinfection. Conversely, pDC and mDC had marked loss of IFN-α and IL-12 production, respectively, and macrophages lost production of both cytokines. In T cell cocultures without TLR7/8 ligand, macrophages were the primary source of IL-12, which was profoundly suppressed postinfection and correlated with loss of IFN-γ release by T cells. TLR7/8-stimulated pDC, mDC and macrophages all produced IL-12 in T cell cocultures, which was suppressed in chronic infection. Supplementing IL-12 enhanced mDC-driven IFN-γ release from T cells, and IL-12 and IFN-α together restored function in TLR7/8-activated macrophages. These findings reveal loss of macrophage and mDC T cell-stimulating function in lymph nodes of SIV-infected rhesus macaques associated with diminished IL-12 and IFN-α production that may be a factor in AIDS immunopathogenesis.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Animais , Proliferação de Células , Interferon-alfa/biossíntese , Interleucina-12/biossíntese , Linfonodos/citologia , Linfonodos/imunologia , Macaca mulatta , Masculino , Fagocitose/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia
19.
Crit Rev Immunol ; 34(3): 227-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24941075

RESUMO

Dengue is a mosquito-borne disease caused by infection with dengue virus (DENV) that represents a serious and expanding global health threat. Most DENV infections are inapparent or produce mild and self-limiting illness; however a significant proportion results in severe disease characterized by vasculopathy and plasma leakage that may culminate in shock and death. The cause of dengue-associated vasculopathy is likely to be multifactorial but remains essentially unknown. Severe disease is manifest during a critical phase from 4 to 7 days after onset of symptoms, once the virus has disappeared from the circulation but before the peak of T-cell activation, suggesting that other factors mediate vasculopathy. Here, we present evidence for a combined role of plasmablasts, complement, and platelets in driving severe disease in DENV infection. Massive expansion of virus-specific plasmablasts peaks during the critical phase of infection, coincident with activation of complement and activation and depletion of platelets. We propose a step-wise model in which virus-specific antibodies produced by plasmablasts form immune complexes, leading to activation of complement and release of vasoactive anaphylatoxins. Platelets become activated through binding of complement- and antibody-coated virus, as well as direct binding of virus to DC-SIGN, leading to the release of inflammatory microparticles and cytokines and sequestration of platelets in the microvasculature. We suggest that the combined effects of anaphylatoxins, inflammatory microparticles, and platelet sequestration serve as triggers of vasculopathy in severe dengue.


Assuntos
Vírus da Dengue/imunologia , Dengue/etiologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Plaquetas/imunologia , Plaquetas/metabolismo , Ativação do Complemento/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Humanos , Plasmócitos/imunologia , Plasmócitos/metabolismo , Ativação Plaquetária/imunologia
20.
Immunology ; 143(2): 146-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24684292

RESUMO

Myeloid dendritic cells (mDC) are key mediators of innate and adaptive immunity to virus infection, but the impact of HIV infection on the mDC response, particularly early in acute infection, is ill-defined. We studied acute pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques to address this question. The mDC in blood and bone marrow were depleted within 12 days of intravenous infection with SIVmac251, associated with a marked proliferative response. In lymph nodes, mDC were apoptotic, activated and proliferating, despite normal mDC numbers, reflecting a regenerative response that compensated for mDC loss. Blood mDC had increased expression of MHC class II, CCR7 and CD40, whereas in lymph nodes these markers were significantly decreased, indicating that acute infection induced maturation of mDC in blood but resulted in accumulation of immature mDC in lymph nodes. Following SIV infection, lymph node mDC had an increased capacity to secrete tumour necrosis factor-α upon engagement with a Toll-like receptor 7/8 ligand that mimics exposure to viral RNA, and this was inversely correlated with MHC class II and CCR7 expression. Lymph node mDC had an increased ability to capture and cleave soluble antigen, confirming their functionally immature state. These data indicate that acute SIV infection results in increased mDC turnover, leading to accumulation in lymph nodes of immature mDC with an increased responsiveness to virus stimulation.


Assuntos
Células Dendríticas/imunologia , Linfonodos/imunologia , Macaca mulatta/imunologia , Células Mieloides/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Apoptose , Antígenos CD40/sangue , Proliferação de Células , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Células Dendríticas/virologia , Feminino , Antígenos de Histocompatibilidade Classe II/sangue , Interações Hospedeiro-Patógeno , Linfonodos/metabolismo , Linfonodos/patologia , Linfonodos/virologia , Macaca mulatta/sangue , Masculino , Células Mieloides/metabolismo , Células Mieloides/patologia , Células Mieloides/virologia , Receptores CCR7/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Fatores de Tempo , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA