Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neural Dev ; 11(1): 17, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27609139

RESUMO

BACKGROUND: The mouse cerebellum (Cb) has a remarkably complex foliated three-dimensional (3D) structure, but a stereotypical cytoarchitecture and local circuitry. Little is known of the cellular behaviors and genes that function during development to determine the foliation pattern. In the anteroposterior axis the mammalian cerebellum is divided by lobules with distinct sizes, and the foliation pattern differs along the mediolateral axis defining a medial vermis and two lateral hemispheres. In the vermis, lobules are further grouped into four anteroposterior zones (anterior, central, posterior and nodular zones) based on genetic criteria, and each has distinct lobules. Since each cerebellar afferent group projects to particular lobules and zones, it is critical to understand how the 3D structure of the Cb is acquired. During cerebellar development, the production of granule cells (gcs), the most numerous cell type in the brain, is required for foliation. We hypothesized that the timing of gc accumulation is different in the four vermal zones during development and contributes to the distinct lobule morphologies. METHODS AND RESULTS: In order to test this idea, we used genetic inducible fate mapping to quantify accumulation of gcs in each lobule during the first two postnatal weeks in mice. The timing of gc production was found to be particular to each lobule, and delayed in the central zone lobules relative to the other zones. Quantification of gc proliferation and differentiation at three time-points in lobules representing different zones, revealed the delay involves a later onset of maximum differentiation and prolonged proliferation of gc progenitors in the central zone. Similar experiments in Engrailed mutants (En1 (-/+) ;En2 (-/-) ), which have a smaller Cb and altered foliation pattern preferentially outside the central zone, showed that gc production, proliferation and differentiation are altered such that the differences between zones are attenuated compared to wild-type mice. CONCLUSIONS: Our results reveal that gc production is differentially regulated in each zone of the cerebellar vermis, and our mutant analysis indicates that the dynamics of gc production plays a role in determining the 3D structure of the Cb.


Assuntos
Cerebelo/crescimento & desenvolvimento , Neurônios/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
2.
Dev Biol ; 367(1): 25-39, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22564796

RESUMO

The layered cortex of the cerebellum is folded along the anterior-posterior axis into lobules separated by fissures, allowing the large number of cells needed for advanced cerebellar functions to be packed into a small volume. During development, the cerebellum begins as a smooth ovoid structure with two progenitor zones, the ventricular zone and upper rhombic lip, which give rise to distinct cell types in the mature cerebellum. Initially, the cerebellar primordium is divided into five cardinal lobes, which are subsequently further subdivided by fissures. The cellular processes and genes that regulate the formation of a normal pattern of fissures are poorly understood. The engrailed genes (En1 and En2) are expressed in all cerebellar cell types and are critical for regulating formation of specific fissures. However, the cerebellar cell types that En1 and En2 act in to control growth and/or patterning of fissures has not been determined. We conditionally eliminated En2 or En1 and En2 either in both progenitor zones and their descendents or in the two complementary sets of cells derived from each progenitor zone. En2 was found to be required only transiently in the progenitor zones and their immediate descendents to regulate formation of three fissures and for general growth of the cerebellum. In contrast, En1 and En2 have overlapping functions in the cells derived from each progenitor zone in regulating formation of additional fissures and for extensive cerebellar growth. Furthermore, En1/2 function in ventricular zone-derived cells plays a more significant role in determining the timing of initiation and positioning of fissures, whereas in upper rhombic lip-derived cells the genes are more important in regulating cerebellar growth. Our studies reveal the complex manner in which the En genes control cerebellar growth and foliation in distinct cell types.


Assuntos
Linhagem da Célula , Córtex Cerebelar/citologia , Córtex Cerebelar/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Córtex Cerebelar/metabolismo , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA