Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol Rep ; 3: 100069, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36419607

RESUMO

Crustins represent the largest and most diverse family of antimicrobial peptides (AMPs) found in crustaceans. They are classically defined as disulfide-rich peptides/polypeptides holding a typical Whey Acidic Protein (WAP) domain at the C-terminal end. This WAP domain has eight cysteine residues forming a tightly packed structure, the four-disulfide core (4DSC) motif, that is also found in other proteins displaying protease inhibitory properties. Crustins are highly diverse in terms of primary structure, size and biochemical features, thus exhibiting a series of biological functions beyond their antimicrobial properties. In order to better categorize the distinct crustin members, different classification systems have been proposed. In this review, we discuss the current classification systems and explore the biological implication of the impressive molecular diversity of this unique AMP family. We also summarize the recent findings on the role of these effectors in crustacean immunity and homeostasis as well as in host-microbe interactions.

2.
J Invertebr Pathol ; 182: 107586, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33812924

RESUMO

The aim of this study was to identify and characterize, at the molecular and transcriptional levels, sequences encoding the different members of the four families of shrimp antimicrobial peptides (AMPs) in species of the genus Farfantepenaeus. The identification of the AMP sequences was performed by in silico analysis as well as by molecular cloning and nucleotide sequencing. We identified all seven shrimp ALFs (ALF-A to ALF-G), both Type IIa and Type IIb crustins as well as two stylicins (STY1 and STY2) in Farfantepenaeus. Only two genes (PEN1/2 and PEN4) of the four-member penaeidin family (PEN1/2 to PEN5) were found and this is the first report of stylicins as well as of several additional members of ALFs, crustins and penaeidins in species of the genus Farfantepenaeus. All AMP genes have shown to be constitutively transcribed in the shrimp immune cells (hemocytes), except for ALF-G. Finally, the transcriptional profile of the different AMPs was assessed in the hemocytes of F. paulensis (pink shrimp) following an experimental infection with the opportunistic filamentous fungus Fusarium solani. We found that while the expression of ALF-B was induced at 24 h, the STY2 gene was down-regulated at 48 h post-challenge. These results provide evidence of the molecular diversity of AMPs from shrimp of the genus Farfantepenaeus in terms of sequences, biochemical properties and expression profiles in response to infectious diseases.


Assuntos
Fusarium/fisiologia , Expressão Gênica , Interações Hospedeiro-Patógeno , Penaeidae/genética , Proteínas Citotóxicas Formadoras de Poros/genética , Animais , Penaeidae/microbiologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo
3.
mBio ; 10(5)2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641083

RESUMO

Big defensins, ancestors of ß-defensins, are composed of a ß-defensin-like C-terminal domain and a globular hydrophobic ancestral N-terminal domain. This unique structure is found in a limited number of phylogenetically distant species, including mollusks, ancestral chelicerates, and early-branching cephalochordates, mostly living in marine environments. One puzzling evolutionary issue concerns the advantage for these species of having maintained a hydrophobic domain lost during evolution toward ß-defensins. Using native ligation chemistry, we produced the oyster Crassostrea gigas BigDef1 (Cg-BigDef1) and its separate domains. Cg-BigDef1 showed salt-stable and broad-range bactericidal activity, including against multidrug-resistant human clinical isolates of Staphylococcus aureus We found that the ancestral N-terminal domain confers salt-stable antimicrobial activity to the ß-defensin-like domain, which is otherwise inactive. Moreover, upon contact with bacteria, the N-terminal domain drives Cg-BigDef1 assembly into nanonets that entrap and kill bacteria. We speculate that the hydrophobic N-terminal domain of big defensins has been retained in marine phyla to confer salt-stable interactions with bacterial membranes in environments where electrostatic interactions are impaired. Those remarkable properties open the way to future drug developments when physiological salt concentrations inhibit the antimicrobial activity of vertebrate ß-defensins.IMPORTANCE ß-Defensins are host defense peptides controlling infections in species ranging from humans to invertebrates. However, the antimicrobial activity of most human ß-defensins is impaired at physiological salt concentrations. We explored the properties of big defensins, the ß-defensin ancestors, which have been conserved in a number of marine organisms, mainly mollusks. By focusing on a big defensin from oyster (Cg-BigDef1), we showed that the N-terminal domain lost during evolution toward ß-defensins confers bactericidal activity to Cg-BigDef1, even at high salt concentrations. Cg-BigDef1 killed multidrug-resistant human clinical isolates of Staphylococcus aureus Moreover, the ancestral N-terminal domain drove the assembly of the big defensin into nanonets in which bacteria are entrapped and killed. This discovery may explain why the ancestral N-terminal domain has been maintained in diverse marine phyla and creates a new path of discovery to design ß-defensin derivatives active at physiological and high salt concentrations.


Assuntos
Antibacterianos/química , Defensinas/química , Nanoestruturas/química , Animais , Antibacterianos/farmacologia , Crassostrea/efeitos dos fármacos , Humanos , Imunidade Inata , Espectroscopia de Ressonância Magnética , Staphylococcus aureus/efeitos dos fármacos
4.
Fish Shellfish Immunol ; 86: 82-92, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30439499

RESUMO

Stylicins are anionic antimicrobial host defense peptides (AAMPs) composed of a proline-rich N-terminal region and a C-terminal portion containing 13 conserved cysteine residues. Here, we have increased our knowledge about these unexplored crustacean AAMPs by the characterization of novel stylicin members in the most cultivated penaeid shrimp, Litopenaeus vannamei. We showed that the L. vannamei stylicin family is composed of two members (Lvan-Stylicin1 and Lvan-Stylicin2) encoded by different loci which vary in gene copy number. Unlike the other three gene-encoded antimicrobial peptide families from penaeid shrimp, the expression of Lvan-Stylicins is not restricted to hemocytes. Indeed, they are also produced by the columnar epithelial cells lining the midgut and its anterior caecum. Interestingly, Lvan-Stylicins are simultaneously transcribed at different transcriptional levels in a single shrimp and are differentially modulated in hemocytes after infections. While the expression of both genes showed to be responsive to damage-associated molecular patterns, only Lvan-Stylicin2 was induced after a Vibrio infection. Besides, Lvan-Stylicins also showed a distinct pattern of gene expression in the three portions of the midgut (anterior, middle and posterior) and during shrimp development. We provide here the first evidence of the diversity of the stylicin antimicrobial peptide family in terms of sequence and gene expression distribution and regulation.


Assuntos
Hemócitos/metabolismo , Intestinos/citologia , Penaeidae/metabolismo , Peptídeos/imunologia , Vibrio/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Regulação da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno , Penaeidae/imunologia , Vibrio/classificação
5.
Mar Drugs ; 16(10)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314303

RESUMO

Anti-lipopolysaccharide factors (ALFs) are antimicrobial peptides with a central ß-hairpin structure able to bind to microbial components. Mining sequence databases for ALFs allowed us to show the remarkable diversity of ALF sequences in shrimp. We found at least seven members of the ALF family (Groups A to G), including two novel Groups (F and G), all of which are encoded by different loci with conserved gene organization. Phylogenetic analyses revealed that gene expansion and subsequent diversification of the ALF family occurred in crustaceans before shrimp speciation occurred. The transcriptional profile of ALFs was compared in terms of tissue distribution, response to two pathogens and during shrimp development in Litopenaeus vannamei, the most cultivated species. ALFs were found to be constitutively expressed in hemocytes and to respond differently to tissue damage. While synthetic ß-hairpins of Groups E and G displayed both antibacterial and antifungal activities, no activity was recorded for Group F ß-hairpins. Altogether, our results showed that ALFs form a family of shrimp AMPs that has been the subject of intense diversification. The different genes differ in terms of tissue expression, regulation and function. These data strongly suggest that multiple selection pressures have led to functional diversification of ALFs in shrimp.


Assuntos
Anti-Infecciosos/farmacologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Penaeidae/genética , Distribuição Tecidual/genética , Sequência de Aminoácidos , Animais , Anti-Infecciosos/metabolismo , Proteínas de Artrópodes/metabolismo , Hemócitos/metabolismo , Penaeidae/metabolismo , Filogenia , Alinhamento de Sequência , Transcrição Gênica/efeitos dos fármacos
6.
Mar Drugs ; 16(1)2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29337853

RESUMO

Crustins form a large family of antimicrobial peptides (AMPs) in crustaceans composed of four sub-groups (Types I-IV). Type II crustins (Type IIa or "Crustins" and Type IIb or "Crustin-like") possess a typical hydrophobic N-terminal region and are by far the most representative sub-group found in penaeid shrimp. To gain insight into the molecular diversity of Type II crustins in penaeids, we identified and characterized a Type IIb crustin in Litopenaeus vannamei (Crustin-like Lv) and compared Type II crustins at both molecular and transcriptional levels. Although L. vannamei Type II crustins (Crustin Lv and Crustin-like Lv) are encoded by separate genes, they showed a similar tissue distribution (hemocytes and gills) and transcriptional response to the shrimp pathogens Vibrio harveyi and White spot syndrome virus (WSSV). As Crustin Lv, Crustin-like Lv transcripts were found to be present early in development, suggesting a maternal contribution to shrimp progeny. Altogether, our in silico and transcriptional data allowed to conclude that (1) each sub-type displays a specific amino acid signature at the C-terminal end holding both the cysteine-rich region and the whey acidic protein (WAP) domain, and that (2) shrimp Type II crustins evolved from a common ancestral gene that conserved a similar pattern of transcriptional regulation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Penaeidae/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular/métodos , Regulação da Expressão Gênica/genética , Hemócitos/microbiologia , Hemócitos/virologia , Proteínas do Leite/genética , Penaeidae/microbiologia , Penaeidae/virologia , Filogenia , Alinhamento de Sequência , Transcrição Gênica/genética , Vibrio/genética , Vírus da Síndrome da Mancha Branca 1/genética
7.
Fish Shellfish Immunol ; 56: 123-126, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27380968

RESUMO

Fibrinogen-related proteins (FREPs) comprise a large family of microbial recognition proteins involved in many biological functions in both vertebrate and invertebrate animals. By taking advantage of publicly accessible databases, we have identified a FREP-like homolog in the most cultivated penaeid shrimp, Litopenaeus vannamei (LvFrep). The obtained sequence showed a conserved fibrinogen-related domain (FReD) and displayed significant similarities to FREP-like proteins from other invertebrates and to ficolins from crustaceans. The expression of LvFrep appeared to be limited to circulating hemocytes. Interestingly, LvFrep gene expression was induced in shrimp hemocytes only in response to a Vibrio infection but not to the White spot syndrome virus (WSSV). Moreover, LvFrep transcript levels were detected early in fertilized eggs, suggesting the participation of this immune-related gene in the antimicrobial defenses during shrimp development.


Assuntos
Fibrinogênio/genética , Regulação da Expressão Gênica , Penaeidae/genética , Penaeidae/imunologia , Vibrio/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Fibrinogênio/química , Fibrinogênio/metabolismo , Hemócitos/metabolismo , Óvulo/metabolismo , Penaeidae/classificação , Penaeidae/crescimento & desenvolvimento , Filogenia , Análise de Sequência de Proteína
8.
Artigo em Inglês | MEDLINE | ID: mdl-27160602

RESUMO

Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as 'marine invertebrates'. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Invertebrados/genética , Invertebrados/microbiologia , Animais , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Invertebrados/virologia , Penaeidae/genética , Penaeidae/microbiologia , Penaeidae/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA