Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Organometallics ; 42(20): 3013-3024, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37886624

RESUMO

We report the activation and functionalization of Si-N bonds with pinacol borane catalyzed by a three-coordinate iron(II) ß-diketiminate complex. The reactions proceed via the mild activation of silazanes to yield useful hydrosilanes and aminoboranes. The reaction is studied by kinetic analysis, along with a detailed investigation of decomposition pathways using catecholborane as an analogue of the pinacol borane used in catalysis. We have extended the methodology to develop a polycarbosilazane depolymerization strategy, which generates hydrosilane quantitatively along with complete conversion to the Bpin-protected diamine. The analogous Si-O bond cleavage can also be achieved with heating, using silyl ether starting materials to generate hydrosilane and alkoxyborane products. Depolymerization of poly(silyl ether)s using our strategy successfully converts the polymer to 90% Bpin-protected alcohols.

2.
Angew Chem Int Ed Engl ; 61(37): e202208663, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35851715

RESUMO

The application of an alkyne cyclotrimerization regime with an [Fe(salen)]2 -µ-oxo (1) catalyst to triphenylmethylphosphaalkyne (2) yields gram-scale quantities of 2,4,6-tris(triphenylmethyl)-Dewar-1,3,5-triphosphabenzene (3). Bulky lithium salt LiHMDS facilitates a rearrangement of 3 to the 1,3,5-triphosphabenzene valence isomer (3'), which subsequently undergoes an intriguing phosphorus migration reaction to form the ring-contracted species (3''). Density functional theory calculations provide a plausible mechanism for this rearrangement. Given the stability of 3, a diverse array of unprecedented transformations was investigated. We report novel crystallographically characterized products of successful nucleophilic/electrophilic addition and protonation/oxidation reactions.

3.
Inorg Chem ; 60(21): 16826-16833, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34647448

RESUMO

The hydrogen/halogen exchange of phosphines has been exploited to establish a truly useable substrate scope and straightforward methodology for the formation of cyclopolyphosphines. Starting from a single dichlorophosphine, a sacrificial proton "donor phosphine" makes the rapid, mild synthesis of cyclopolyphosphines possible: reactions are complete within 10 min at room temperature. Novel (aryl)cyclopentaphosphines (ArP)5 have been formed in good conversion, with the crystal structures presented. The use of catalytic quantities of iron(III) acetylacetonate provides significant improvements in conversion in the context of diphosphine (Ar2P)2 and alkyl-substituted cyclotetra- or cyclopentaphosphine ((AlkylP)n, where n = 4 or 5) formation. Both iron-free and iron-mediated reactions show high levels of selectivity for one specific ring size. Finally, investigations into the reactivity of Fe(acac)3 suggest that the iron species is acting as a sink for the hydrochloric acid byproduct of the reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA