Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(6): e0285478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310957

RESUMO

Many publications lack sufficient background information (e.g. location) to be interpreted, replicated, or reused for synthesis. This impedes scientific progress and the application of science to practice. Reporting guidelines (e.g. checklists) improve reporting standards. They have been widely taken up in the medical sciences, but not in ecological and agricultural research. Here, we use a community-centred approach to develop a reporting checklist (AgroEcoList 1.0) through surveys and workshops with 23 experts and the wider agroecological community. To put AgroEcoList in context, we also assessed the agroecological community's perception of reporting standards in agroecology. A total of 345 researchers, reviewers, and editors, responded to our survey. Although only 32% of respondents had prior knowledge of reporting guidelines, 76% of those that had said guidelines improved reporting standards. Overall, respondents agreed on the need of AgroEcolist 1.0; only 24% of respondents had used reporting guidelines before, but 78% indicated they would use AgroEcoList 1.0. We updated AgroecoList 1.0 based on respondents' feedback and user-testing. AgroecoList 1.0 consists of 42 variables in seven groups: experimental/sampling set-up, study site, soil, livestock management, crop and grassland management, outputs, and finances. It is presented here, and is also available on github (https://github.com/AgroecoList/Agroecolist). AgroEcoList 1.0 can serve as a guide for authors, reviewers, and editors to improve reporting standards in agricultural ecology. Our community-centred approach is a replicable method that could be adapted to develop reporting checklists in other fields. Reporting guidelines such as AgroEcoList can improve reporting standards and therefore the application of research to practice, and we recommend that they are adopted more widely in agriculture and ecology.


Assuntos
Agricultura , Lista de Checagem , Animais , Solo , Conhecimento , Gado
2.
FEMS Microbiol Ecol ; 98(12)2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36396354

RESUMO

Plant-soil interactions can be important drivers of biological invasions. In particular, the symbiotic relationship between legumes and nitrogen-fixing soil bacteria (i.e. rhizobia) may be influential in invasion success. Legumes, including Australian acacias, have been introduced into novel ranges around the world. Our goal was to examine the acacia-rhizobia symbiosis to determine whether cointroduction of non-native mutualists plays a role in invasiveness of introduced legumes. To determine whether acacias were introduced abroad concurrently with native symbionts, we selected four species introduced to California (two invasive and two noninvasive in the region) and identified rhizobial strains associating with each species in their native and novel ranges. We amplified three genes to examine phylogenetic placement (16S rRNA) and provenance (nifD and nodC) of rhizobia associating with acacias in California and Australia. We found that all Acacia species, regardless of invasive status, are associating with rhizobia of Australian origin in their introduced ranges, indicating that concurrent acacia-rhizobia introductions have occurred for all species tested. Our results suggest that cointroduction of rhizobial symbionts may be involved in the establishment of non-native acacias in their introduced ranges, but do not contribute to the differential invasiveness of Acacia species introduced abroad.


Assuntos
Acacia , Fabaceae , Bactérias Fixadoras de Nitrogênio , Rhizobium , Rhizobium/genética , Filogenia , RNA Ribossômico 16S/genética , Austrália , California , Solo
3.
Evol Appl ; 14(9): 2162-2178, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34603490

RESUMO

Recent advances in gene-editing technologies have opened new avenues for genetic pest control strategies, in particular around the use of gene drives to suppress or modify pest populations. Significant uncertainty, however, surrounds the applicability of these strategies to novel target species, their efficacy in natural populations and their eventual safety and acceptability as control methods. In this article, we identify issues associated with the potential use of gene drives in agricultural systems, to control pests and diseases that impose a significant cost to agriculture around the world. We first review the need for innovative approaches and provide an overview of the most relevant biological and ecological traits of agricultural pests that could impact the outcome of gene drive approaches. We then describe the specific challenges associated with using gene drives in agricultural systems, as well as the opportunities that these environments may offer, focusing in particular on the advantages of high-threshold gene drives. Overall, we aim to provide a comprehensive view of the potential opportunities and the remaining uncertainties around the use of gene drives in agricultural systems.

4.
Annu Rev Phytopathol ; 59: 125-152, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-33929880

RESUMO

Owing to their evolutionary potential, plant pathogens are able to rapidly adapt to genetically controlled plant resistance, often resulting in resistance breakdown and major epidemics in agricultural crops. Various deployment strategies have been proposed to improve resistance management. Globally, these rely on careful selection of resistance sources and their combination at various spatiotemporal scales (e.g., via gene pyramiding, crop rotations and mixtures, landscape mosaics). However, testing and optimizing these strategies using controlled experiments at large spatiotemporal scales are logistically challenging. Mathematical models provide an alternative investigative tool, and many have been developed to explore resistance deployment strategies under various contexts. This review analyzes 69 modeling studies in light of specific model structures (e.g., demographic or demogenetic, spatial or not), underlying assumptions (e.g., whether preadapted pathogens are present before resistance deployment), and evaluation criteria (e.g., resistance durability, disease control, cost-effectiveness). It highlights major research findings and discusses challenges for future modeling efforts.


Assuntos
Resistência à Doença , Doenças das Plantas , Produtos Agrícolas , Resistência à Doença/genética
5.
Evol Appl ; 14(2): 335-347, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33664780

RESUMO

Genetic diversity within pathogen populations is critically important for predicting pathogen evolution, disease outcomes and prevalence. However, we lack a good understanding of the processes maintaining genetic variation and constraints on pathogen life-history evolution. Here, we analysed interactions between 12 wheat host genotypes and 145 strains of Zymoseptoria tritici from five global populations to investigate the evolution and maintenance of variation in pathogen virulence and reproduction. We found a strong positive correlation between virulence (amount of leaf necrosis) and reproduction (pycnidia density within lesions), with substantial variation in both traits maintained within populations. On average, highly virulent isolates exhibited higher reproduction, which might increase transmission potential in agricultural fields planted to homogeneous hosts at a high density. We further showed that pathogen strains with a narrow host range (i.e. specialists) for reproduction were on average less virulent, and those with a broader host range (i.e. generalists) were on average less fecund on a given specific host. These costs associated with adaptation to different host genotypes might constrain the emergence of generalists by disrupting the directional evolution of virulence and fecundity. We conclude that selection favouring pathogen strains that are virulent across diverse hosts, coupled with selection that maximizes fecundity on specific hosts, may explain the maintenance of these pathogenicity traits within and among populations.

6.
Environ Microbiol ; 23(4): 2315-2330, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33538383

RESUMO

Infections by more than one strain of a pathogen predominate under natural conditions. Mixed infections can have significant, though often unpredictable, consequences for overall virulence, pathogen transmission and evolution. However, effects of mixed infection on disease development in plants often remain unclear and the critical factors that determine the outcome of mixed infections remain unknown. The fungus Zymoseptoria tritici forms genetically diverse infections in wheat fields. Here, for a range of pathogen traits, we experimentally decompose the infection process to determine how the outcomes and consequences of mixed infections are mechanistically realized. Different strains of Z. tritici grow in close proximity and compete in the wheat apoplast, resulting in reductions in growth of individual strains and in pathogen reproduction. We observed different outcomes of competition at different stages of the infection. Overall, more virulent strains had higher competitive ability during host colonization, and less virulent strains had higher transmission potential. We showed that within-host competition can have a major effect on infection dynamics and pathogen population structure in a pathogen and host genotype-specific manner. Consequently, mixed infections likely have a major effect on the development of septoria tritici blotch epidemics and the evolution of virulence in Z. tritici.


Assuntos
Ascomicetos , Coinfecção , Doenças das Plantas/microbiologia , Triticum/microbiologia , Ascomicetos/patogenicidade , Coinfecção/microbiologia
7.
Am Nat ; 197(2): E55-E71, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33523787

RESUMO

AbstractIn symbiotic interactions, spatiotemporal variation in the distribution or population dynamics of one species represents spatial and temporal heterogeneity of the landscape for the other. Such interdependent demographic dynamics result in situations where the relative importance of biotic and abiotic factors in determining ecological processes is complicated to decipher. Using a detailed survey of three metapopulations of the succulent plant Cakile maritima and the necrotrophic fungus Alternaria brassicicola located along the southeastern Australian coast, we developed a series of statistical analyses-namely, synchrony analysis, patch occupancy dynamics, and a spatially explicit metapopulation model-to understand how habitat quality, weather conditions, dispersal, and spatial structure determine metapopulation dynamics. Climatic conditions are important drivers, likely explaining the high synchrony among populations. Host availability, landscape features facilitating dispersal, and habitat conditions also impact the occurrence and spread of disease. Overall, we show that the collection of extensive data on host and pathogen population dynamics, in combination with spatially explicit epidemiological modeling, makes it possible to accurately predict disease dynamics-even when there is extreme variability in host population dynamics. Finally, we discuss the importance of genetic information for predicting demographic dynamics in this pathosystem.


Assuntos
Alternaria/fisiologia , Brassicaceae/microbiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Clima , Ecossistema , New South Wales , Dinâmica Populacional , Dispersão de Sementes
8.
J Evol Biol ; 33(10): 1345-1360, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32969551

RESUMO

Scientists are rapidly developing synthetic gene drive elements intended for release into natural populations. These are intended to control or eradicate disease vectors and pests, or to spread useful traits through wild populations for disease control or conservation purposes. However, a crucial problem for gene drives is the evolution of resistance against them, preventing their spread. Understanding the mechanisms by which populations might evolve resistance is essential for engineering effective gene drive systems. This review summarizes our current knowledge of drive resistance in both natural and synthetic gene drives. We explore how insights from naturally occurring and synthetic drive systems can be integrated to improve the design of gene drives, better predict the outcome of releases and understand genomic conflict in general.


Assuntos
Evolução Biológica , Tecnologia de Impulso Genético , Seleção Genética
9.
PLoS Pathog ; 16(8): e1008731, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810177

RESUMO

A priority for research on infectious disease is to understand how epidemiological and evolutionary processes interact to influence pathogen population dynamics and disease outcomes. However, little is understood about how population adaptation changes across time, how sexual vs. asexual reproduction contribute to the spread of pathogens in wild populations and how diversity measured with neutral and selectively important markers correlates across years. Here, we report results from a long-term study of epidemiological and genetic dynamics within several natural populations of the Linum marginale-Melampsora lini plant-pathogen interaction. Using pathogen isolates collected from three populations of wild flax (L. marginale) spanning 16 annual epidemics, we probe links between pathogen population dynamics, phenotypic variation for infectivity and genomic polymorphism. Pathogen genotyping was performed using 1567 genome-wide SNP loci and sequence data from two infectivity loci (AvrP123, AvrP4). Pathogen isolates were phenotyped for infectivity using a differential set. Patterns of epidemic development were assessed by conducting surveys of infection prevalence in one population (Kiandra) annually. Bayesian clustering analyses revealed host population and ecotype as key predictors of pathogen genetic structure. Despite strong fluctuations in pathogen population size and severe annual bottlenecks, analysis of molecular variance revealed that pathogen population differentiation was relatively stable over time. Annually, varying levels of clonal spread (0-44.8%) contributed to epidemics. However, within populations, temporal genetic composition was dynamic with rapid turnover of pathogen genotypes, despite the dominance of only four infectivity phenotypes across the entire study period. Furthermore, in the presence of strong fluctuations in population size and migration, spatial selection may maintain pathogen populations that, despite being phenotypically stable, are genetically highly dynamic.


Assuntos
Basidiomycota/genética , Linho/microbiologia , Doenças das Plantas/microbiologia , Basidiomycota/classificação , Basidiomycota/isolamento & purificação , Biodiversidade , Evolução Biológica , Variação Genética , Genótipo , Fenótipo , Polimorfismo Genético
10.
New Phytol ; 228(4): 1440-1449, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32619298

RESUMO

There is strong evidence for a phylogenetic signal in the degree to which species share co-evolved biotic partners and in the outcomes of biotic interactions. This implies there should be a phylogenetic signal in the outcome of feedbacks between plants and the soil microbiota they cultivate. However, attempts to identify a phylogenetic signal in plant-soil feedbacks have produced mixed results. Here we clarify how phylogenetic signals could arise in plant-soil feedbacks and use a recent compilation of data from feedback experiments to identify: whether there is a phylogenetic signal in the outcome of plant-soil feedbacks; and whether any signal arises through directional or divergent changes in feedback outcomes with evolutionary time. We find strong evidence for a divergent phylogenetic signal in feedback outcomes. Distantly related plant species show more divergent responses to each other's soil microbiota compared with closely related plant species. The pattern of divergence implies occasional co-evolutionary shifts in how plants interact with soil microbiota, with strongly contrasting feedback responses among some plant lineages. Our results highlight that it is difficult to predict feedback outcomes from phylogeny alone, other than to say that more closely related species tend to have more similar responses.


Assuntos
Plantas , Solo , Retroalimentação , Filogenia , Plantas/genética , Microbiologia do Solo
11.
Curr Opin Insect Sci ; 38: 6-14, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32070816

RESUMO

With the advent of new genetic technologies such as gene silencing and gene drive, efforts to develop additional management tools for weed management is gaining significant momentum. These technologies promise novel ways to develop sustainable weed control options because gene silencing can switch-off genes mediating adaptation (e.g. growth, herbicide resistance), and gene drive can be used to spread modified traits and to engineer wild populations with reduced fitness. However, applying gene silencing and/or gene drive is expected to be inherently complex as their application is constrained by several methodological and technological difficulties. In this review we explore the challenges of these technologies, and discuss strategies and resources accessible to accelerate the development of gene-tech based tools for weed management. We also highlight how gene technologies can be integrated into existing management tactics such as classical biological control, and their possible interactions.


Assuntos
Tecnologia de Impulso Genético/métodos , Plantas Daninhas/genética , Plantas Geneticamente Modificadas/genética , Controle de Plantas Daninhas/métodos , Animais , Estudos de Viabilidade
12.
Ecol Lett ; 22(12): 2077-2086, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31612601

RESUMO

A pervasive challenge in microbial ecology is understanding the genetic level where ecological units can be differentiated. Ecological differentiation often occurs at fine genomic levels, yet it is unclear how to utilise ecological information to define ecotypes given the breadth of environmental variation among microbial taxa. Here, we present an analytical framework that infers clusters along genome-based microbial phylogenies according to shared environmental responses. The advantage of our approach is the ability to identify genomic clusters that best fit complex environmental information whilst characterising cluster niches through model predictions. We apply our method to determine climate-associated ecotypes in populations of nitrogen-fixing symbionts using whole genomes, explicitly sampled to detect climate differentiation across a heterogeneous landscape. Although soil and plant host characteristics strongly influence distribution patterns of inferred ecotypes, our flexible statistical method enabled us to identify climate-associated genomic clusters using environmental data, providing solid support for ecological specialisation in soil symbionts.


Assuntos
Clima , Genoma Bacteriano , Ecótipo , Filogenia , Microbiologia do Solo
13.
Proc Biol Sci ; 286(1911): 20191515, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31551052

RESUMO

Plant species, populations and communities are under threat from climate change, invasive pathogens, weeds and habitat fragmentation. Despite considerable research effort invested in genome engineering for crop improvement, the development of genetic tools for the management of wild plant populations has rarely been given detailed consideration. Gene drive systems that allow direct genetic management of plant populations via the spread of fitness-altering genetic modifications could be of great utility. However, despite the rapid development of synthetic tools and their enormous promise, little explicit consideration has been given to their application in plants and, to date, they remain untested. This article considers the potential utility of gene drives for the management of wild plant populations, and examines the factors that might influence the design, spread and efficacy of synthetic drives. To gain insight into optimal ways to design and deploy synthetic drive systems, we investigate the diversity of mechanisms underlying natural gene drives and their dynamics within plant populations and species. We also review potential approaches for engineering gene drives and discuss their potential application to plant genomes. We highlight the importance of considering the impact of plant life-history and genetic architecture on the dynamics of drive, investigate the potential for different types of resistance evolution, and touch on the ethical, regulatory and social challenges ahead.


Assuntos
Tecnologia de Impulso Genético , Plantas Daninhas , Controle de Plantas Daninhas/métodos
14.
Evol Appl ; 11(10): 1791-1810, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30459830

RESUMO

Once deployed uniformly in the field, genetically controlled plant resistance is often quickly overcome by pathogens, resulting in dramatic losses. Several strategies have been proposed to constrain the evolutionary potential of pathogens and thus increase resistance durability. These strategies can be classified into four categories, depending on whether resistance sources are varied across time (rotations) or combined in space in the same cultivar (pyramiding), in different cultivars within a field (cultivar mixtures) or among fields (mosaics). Despite their potential to differentially affect both pathogen epidemiology and evolution, to date the four categories of deployment strategies have never been directly compared together within a single theoretical or experimental framework, with regard to efficiency (ability to reduce disease impact) and durability (ability to limit pathogen evolution and delay resistance breakdown). Here, we used a spatially explicit stochastic demogenetic model, implemented in the R package landsepi, to assess the epidemiological and evolutionary outcomes of these deployment strategies when two major resistance genes are present. We varied parameters related to pathogen evolutionary potential (mutation probability and associated fitness costs) and landscape organization (mostly the relative proportion of each cultivar in the landscape and levels of spatial or temporal aggregation). Our results, broadly focused on qualitative resistance to rust fungi of cereal crops, show that evolutionary and epidemiological control are not necessarily correlated and that no deployment strategy is universally optimal. Pyramiding two major genes offered the highest durability, but at high mutation probabilities, mosaics, mixtures and rotations can perform better in delaying the establishment of a universally infective superpathogen. All strategies offered the same short-term epidemiological control, whereas rotations provided the best long-term option, after all sources of resistance had broken down. This study also highlights the significant impact of landscape organization and pathogen evolutionary ability in considering the optimal design of a deployment strategy.

15.
Evol Appl ; 11(8): 1354-1370, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30151045

RESUMO

Genetic, physiological and physical homogenization of agricultural landscapes creates ideal environments for plant pathogens to proliferate and rapidly evolve. Thus, a critical challenge in plant pathology and epidemiology is to design durable and effective strategies to protect cropping systems from damage caused by pathogens. Theoretical studies suggest that spatio-temporal variation in the diversity and distribution of resistant hosts across agricultural landscapes may have strong effects on the epidemiology and evolutionary potential of crop pathogens. However, we lack empirical tests of spatio-temporal deployment of host resistance to pathogens can be best used to manage disease epidemics and disrupt pathogen evolutionary dynamics in real-world systems. In a field experiment, we simulated how differences in Brassica napus resistance deployment strategies and landscape connectivity influence epidemic severity and Leptosphaeria maculans pathogen population composition. Host plant resistance, spatio-temporal connectivity [stubble loads], and genetic connectivity of the inoculum source [composition of canola stubble mixtures] jointly impacted epidemiology (disease severity) and pathogen evolution (population composition). Changes in population composition were consistent with directional selection for the ability to infect the host (infectivity), leading to changes in pathotype (multilocus phenotypes) and infectivity frequencies. We repeatedly observed decreases in the frequency of unnecessary infectivity, suggesting that carrying multiple infectivity genes is costly for the pathogen. From an applied perspective, our results indicate that varying resistance genes in space and time can be used to help control disease, even when resistance has already been overcome. Furthermore, our approach extends our ability to test not only for the efficacy of host varieties in a given year, but also for durability over multiple cropping seasons, given variation in the combination of resistance genes deployed.

16.
PLoS Comput Biol ; 14(4): e1006067, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29649208

RESUMO

Genetically-controlled plant resistance can reduce the damage caused by pathogens. However, pathogens have the ability to evolve and overcome such resistance. This often occurs quickly after resistance is deployed, resulting in significant crop losses and a continuing need to develop new resistant cultivars. To tackle this issue, several strategies have been proposed to constrain the evolution of pathogen populations and thus increase genetic resistance durability. These strategies mainly rely on varying different combinations of resistance sources across time (crop rotations) and space. The spatial scale of deployment can vary from multiple resistance sources occurring in a single cultivar (pyramiding), in different cultivars within the same field (cultivar mixtures) or in different fields (mosaics). However, experimental comparison of the efficiency (i.e. ability to reduce disease impact) and durability (i.e. ability to limit pathogen evolution and delay resistance breakdown) of landscape-scale deployment strategies presents major logistical challenges. Therefore, we developed a spatially explicit stochastic model able to assess the epidemiological and evolutionary outcomes of the four major deployment options described above, including both qualitative resistance (i.e. major genes) and quantitative resistance traits against several components of pathogen aggressiveness: infection rate, latent period duration, propagule production rate, and infectious period duration. This model, implemented in the R package landsepi, provides a new and useful tool to assess the performance of a wide range of deployment options, and helps investigate the effect of landscape, epidemiological and evolutionary parameters. This article describes the model and its parameterisation for rust diseases of cereal crops, caused by fungi of the genus Puccinia. To illustrate the model, we use it to assess the epidemiological and evolutionary potential of the combination of a major gene and different traits of quantitative resistance. The comparison of the four major deployment strategies described above will be the objective of future studies.


Assuntos
Produtos Agrícolas/genética , Resistência à Doença/genética , Modelos Genéticos , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Agricultura , Biologia Computacional , Simulação por Computador , Evolução Molecular , Genes de Plantas , Interações Hospedeiro-Patógeno/genética , Mutação , Processos Estocásticos
17.
Nat Commun ; 8: 14790, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28387250

RESUMO

Microbial symbiosis is integral to plant growth and reproduction, but its contribution to global patterns of plant distribution is unknown. Legumes (Fabaceae) are a diverse and widely distributed plant family largely dependent on symbiosis with nitrogen-fixing rhizobia, which are acquired from soil after germination. This dependency is predicted to limit establishment in new geographic areas, owing to a disruption of compatible host-symbiont associations. Here we compare non-native establishment patterns of symbiotic and non-symbiotic legumes across over 3,500 species, covering multiple independent gains and losses of rhizobial symbiosis. We find that symbiotic legume species have spread to fewer non-native regions compared to non-symbiotic legumes, providing strong support for the hypothesis that lack of suitable symbionts or environmental conditions required for effective nitrogen-fixation are driving these global introduction patterns. These results highlight the importance of mutualisms in predicting non-native species establishment and the potential impacts of microbial biogeography on global plant distributions.


Assuntos
Fabaceae/crescimento & desenvolvimento , Fabaceae/microbiologia , Simbiose , Fabaceae/classificação , Humanos , Fixação de Nitrogênio , Filogenia , Rhizobium/fisiologia , Especificidade da Espécie
18.
Phytopathology ; 106(10): 1117-1127, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27584868

RESUMO

Advances in genomic and molecular technologies coupled with an increasing understanding of the fine structure of many resistance and infectivity genes, have opened up a new era of hope in controlling the many plant pathogens that continue to be a major source of loss in arable crops. Some new approaches are under consideration including the use of nonhost resistance and the targeting of critical developmental constraints. However, the major thrust of these genomic and molecular approaches is to enhance the identification of resistance genes, to increase their ease of manipulation through marker and gene editing technologies and to lock a range of resistance genes together in simply manipulable resistance gene cassettes. All these approaches essentially continue a strategy that assumes the ability to construct genetic-based resistance barriers that are insurmountable to target pathogens. Here we show how the recent advances in knowledge and marker technologies can be used to generate more durable disease resistance strategies that are based on broad evolutionary principles aimed at presenting pathogens with a shifting, landscape of fluctuating directional selection.


Assuntos
Produtos Agrícolas/imunologia , Resistência à Doença , Genômica , Doenças das Plantas/prevenção & controle , Evolução Biológica , Produtos Agrícolas/genética , Doenças das Plantas/imunologia , Análise Espaço-Temporal
19.
AoB Plants ; 82016.
Artigo em Inglês | MEDLINE | ID: mdl-27535176

RESUMO

Identification of mechanisms that allow some species to outcompete others is a fundamental goal in ecology and invasive species management. One useful approach is to examine congeners varying in invasiveness in a comparative framework across native and invaded ranges. Acacia species have been widely introduced outside their native range of Australia, and a subset of these species have become invasive in multiple parts of the world. Within specific regions, the invasive status of these species varies. Our study examined whether a key mechanism in the life history of Acacia species, the legume-rhizobia symbiosis, influences acacia invasiveness on a regional scale. To assess the extent to which species varying in invasiveness correspondingly differ with regard to the diversity of rhizobia they associate with, we grew seven Acacia species ranging in invasiveness in California in multiple soils from both their native (Australia) and introduced (California) ranges. In particular, the aim was to determine whether more invasive species formed symbioses with a wider diversity of rhizobial strains (i.e. are more promiscuous hosts). We measured and compared plant performance, including aboveground biomass, survival, and nodulation response, as well as rhizobial community composition and richness. Host promiscuity did not differ among invasiveness categories. Acacia species that varied in invasiveness differed in aboveground biomass for only one soil and did not differ in survival or nodulation within individual soils. In addition, acacias did not differ in rhizobial richness among invasiveness categories. However, nodulation differed between regions and was generally higher in the native than introduced range. Our results suggest that all Acacia species introduced to California are promiscuous hosts and that host promiscuity per se does not explain the observed differences in invasiveness within this region. Our study also highlights the utility of assessing potential mechanisms of invasion in species' native and introduced ranges.

20.
Evolution ; 70(7): 1473-85, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27241367

RESUMO

The ecological and evolutionary factors that drive the emergence and maintenance of variation in mutualistic benefit (i.e., the benefits provided by one partner to another) in mutualistic symbioses are not well understood. In this study, we evaluated the role that host and symbiont phylogeny might play in determining patterns of mutualistic benefit for interactions among nine species of Acacia and 31 strains of nitrogen-fixing rhizobial bacteria. Using phylogenetic comparative methods we compared patterns of variation in mutualistic benefit (host response to inoculation) to rhizobial phylogenies constructed from housekeeping and symbiosis genes; and a multigene host phylogeny. We found widespread genotype-by-genotype variation in patterns of plant growth. A relatively large component of this variation (21-28%) was strongly influenced by the interacting evolutionary histories of both partners, such that phylogenetically similar host species had similar growth responses when inoculated with phylogenetically similar rhizobia. We also found a relatively large nonphylogenetic effect for the average mutualistic benefit provided by rhizobia to plants, such that phylogenetic relatedness did not predict the overall benefit provided by rhizobia across all hosts. We conclude that phylogenetic relatedness should frequently predict patterns of mutualistic benefit in acacia-rhizobial mutualistic interactions; but that some mutualistic traits also evolve independently of the phylogenies.


Assuntos
Acacia/microbiologia , Acacia/fisiologia , Evolução Biológica , Rhizobium/fisiologia , Simbiose , Proteínas de Bactérias/genética , N-Acetilglucosaminiltransferases/genética , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Rhizobium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA