Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Ecol Evol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103674

RESUMO

Global change is associated with variable shifts in the annual production of aboveground plant biomass, suggesting localized sensitivities with unclear causal origins. Combining remotely sensed normalized difference vegetation index data since the 1980s with contemporary field data from 84 grasslands on 6 continents, we show a widening divergence in site-level biomass ranging from +51% to -34% globally. Biomass generally increased in warmer, wetter and species-rich sites with longer growing seasons and declined in species-poor arid areas. Phenological changes were widespread, revealing substantive transitions in grassland seasonal cycling. Grazing, nitrogen deposition and plant invasion were prevalent in some regions but did not predict overall trends. Grasslands are undergoing sizable changes in production, with implications for food security, biodiversity and carbon storage especially in arid regions where declines are accelerating.

3.
Ecol Lett ; 27(5): e14415, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38712683

RESUMO

The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.


Assuntos
Folhas de Planta , Ciclo do Carbono , Carbono/metabolismo
4.
Ambio ; 53(8): 1124-1135, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38402492

RESUMO

Changes in wild and domestic herbivore populations significantly impact extensive grazing systems, particularly in low productive environments, where increasing wild herbivore populations are perceived as a threat to farming. To assess the magnitude of these changes in Iceland, we compiled time series on herbivore populations from 1986 to 2020 and estimated changes in species densities, metabolic biomass, and consumption of plant biomass in improved lands and unimproved rangelands. We compared estimates of consumption rates to past and present net primary production. Overall, the herbivore community composition shifted from livestock to wildlife dominated. However, wild herbivores only contributed a small fraction (14%) of the total herbivore metabolic biomass and consumption (4-7%), and livestock dominated the overall herbivore biomass. These insights highlight the necessity of developing improved local integrated management for both wild and domestic herbivores where they coexist.


Assuntos
Animais Selvagens , Herbivoria , Gado , Animais , Islândia , Biomassa , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA