Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38675156

RESUMO

Dendritic hydrogels based on carbosilane crosslinkers are promising drug delivery systems, as their amphiphilic nature improves the compatibility with poorly water-soluble drugs. In this work, we explored the impact of the complementary polymer on the amphiphilic properties of the dendritic network. Different polymers were selected as precursors, from the highly lipophilic propylene glycol (PPG) to the hydrophilic polyethylene glycol (PEG), including amphiphilic Pluronics L31, L35 and L61. The dithiol polymers reacted with carbosilane crosslinkers through UV-initiated thiol-ene coupling (TEC), and the resultant materials were classified as non-swelling networks (for PPG, PLUL31 and PLUL61) and high-swelling hydrogels (for PEG and PLUL35). The hydrogels exhibited thermo-responsive properties, shrinking at higher temperatures, and exhibited an intriguing drug release pattern due to internal nanostructuring. Furthermore, we fine-tuned the dendritic crosslinker, including hydroxyl and azide pendant groups in the focal point, generating functional networks that can be modified through degradable (ester) and non-degradable (triazol) bonds. Overall, this work highlighted the crucial role of the amphiphilic balance in the design of dendritic hydrogels with thermo-responsive behavior and confirmed their potential as functional networks for biomedical applications.

2.
Colloids Surf B Biointerfaces ; 217: 112652, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35772353

RESUMO

Biomedical applications of gold nanoparticles (AuNPs) may be limited by their toxicological effects. Although surface-modified AuNPs can induce apoptosis, less is known about whether they can induce other types of cell death. Pyroptosis, an inflammatory type of programmed cell death, can be induced in immune cells, especially macrophages, by bacterial endotoxins. Therefore, in this study, dendronized AuNPs were combined with bacterial lipopolysaccharides (LPSs) as the main stimulators of pro-inflammatory responses to test the induction of pyroptosis in THP-1 myeloid cell line. These AuNPs induced caspase-1 activity (3-4 times more compared to control) and enhanced the release of interleukin (IL)-18 and IL-1ß without inducing gasdermin D cleavage and related pore formation. The production of pro-inflammatory cytokines occurred mainly visible during LPS treatment, although their secretion was observed only after administration of dendronized AuNPs (release of IL-1ß to supernatant up to 80 pg/mL). These findings suggest that dendronized AuNPs can induce pyroptosis-like inflammatory mechanisms and that these mechanisms are enhanced in the presence of bacterial LPS. The intensity of this effect was dependent on AuNP surface modification. These results shed new light on the cytotoxicity of metal NPs, including immune responses, indicating that surface modifications play crucial roles in their nanotoxicological effects.


Assuntos
Lipopolissacarídeos , Nanopartículas Metálicas , Citocinas/metabolismo , Ouro/metabolismo , Ouro/farmacologia , Interleucina-1beta , Lipopolissacarídeos/farmacologia , Monócitos , Piroptose
3.
Biomater Adv ; 133: 112622, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35525744

RESUMO

Bacteria elimination from water sources is key to obtain drinkable water. Hence, the design of systems with ability to interact with bacteria and remove them from water is an attractive proposal. A diversity of polycationic macromolecules has shown bactericide properties, due to interactions with bacteria membranes. In this work, we have grafted cationic carbosilane (CBS) dendrons and dendrimers on the surface of iron oxide magnetic nanoparticles (MNP), leading to NP (ca. 10 nm) that interact with bacteria by covering bacteria membrane. Application of an external magnetic field removes MNP from solution sweeping bacteria attached to them. The interaction of the MNP with Gram-positive S. aureus bacteria is more sensible to the size of dendritic system covering the MNP, whereas interaction with Gram-negative E. coli bacteria is more sensible to the density of cationic groups. Over 500 ppm of NPM, MNP covered with dendrons captured over 90% of both type of bacteria, whereas MNP covered with dendrimers were only able to capture S. aureus bacteria (over 90%) but not E. coli bacteria. Modified MNP were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), Z potential and dynamic light scattering (DLS). Interaction with bacteria was analyzed by UV, TEM and scanning electron microscopy (SEM). Moreover, the possibility to recycle cationic dendronized MNP was explored.


Assuntos
Dendrímeros , Nanopartículas de Magnetita , Cátions , Dendrímeros/química , Escherichia coli , Nanopartículas de Magnetita/química , Silanos , Staphylococcus aureus , Água
4.
Anal Bioanal Chem ; 414(4): 1677-1689, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34881394

RESUMO

Extraction/purification of proteins, at both analytical and industrial levels, is a limiting step that usually requires the use of organic solvents and involves tedious work and a high cost. This work proposes a more sustainable alternative based on the use of magnetic nanoparticles (MNPs) coated with carboxylate-terminated carbosilane dendrons. MNPs coated with first- and second-generation carbosilane dendrons and bare MNPs were employed for the extraction of proteins with different molecular weights and charges. Interaction of proteins with MNPs significantly varied with the pH, the protein, and the dendron generation (different sizes and number of charges in the periphery). Optimal dendron:protein molar ratios and suitable conditions for disrupting interactions after protein extraction were also researched. Second-generation dendron-coated MNPs showed 100% retention capability for all proteins when using acidic conditions. They were reused without losing magnetism or interaction capacity after a disruption of protein-dendron interactions with 0.2% SDS at 100 °C for 10 min. The capacity of dendron-coated MNPs was successfully applied to the recovery/purification of proteins from two food by-products, olive seeds and cheese whey.


Assuntos
Dendrímeros/química , Nanopartículas de Magnetita/química , Proteínas/isolamento & purificação , Silanos/química , Animais , Humanos , Magnetismo/métodos , Nanopartículas de Magnetita/ultraestrutura , Extração em Fase Sólida/métodos
5.
J Phys Chem B ; 125(4): 1196-1206, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33481607

RESUMO

The use of nonviral carriers based on nanomaterials is a promising strategy for modern gene therapy aimed at protecting the genetic material against degradation and enabling its efficient cellular uptake. To improve the effectiveness of nanocarriers in vivo, they are often modified with poly(ethylene glycol) (PEG) to reduce their toxicity, limit nonspecific binding by proteins in the bloodstream, and extend blood half-life. Thus, the selection of an appropriate degree of surface PEGylation is crucial to preserve the interaction of nanoparticles with the genetic material and to ensure its efficient transport to the site of action. Our research focuses on the use of innovative gold nanoparticles (AuNPs) coated with cationic carbosilane dendrons as carriers of siRNA. In this study, using dynamic light scattering and zeta potential measurements, circular dichroism, and gel electrophoresis, we investigated dendronized AuNPs modified to varying degrees with PEG in terms of their interactions with siRNA and thrombin to select the most promising PEGylated carrier for further research.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ouro , Polietilenoglicóis , RNA Interferente Pequeno/genética , Trombina
6.
RSC Adv ; 10(34): 20083-20088, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35520432

RESUMO

The anionic carbosilane (CBS) dendrimer with sulfonate groups G2-S16 is a promising compound for the preparation of a microbicide gel to prevent HIV infection. However, until now its synthesis required aggressive conditions. Hence, a reliable synthetic procedure is very important to face GMP conditions and clinical trials. In this study, G2-S16 has been prepared by a new approach that involves the addition of an amine-terminated dendrimer to ethenesulfonyl fluoride (C2H3SO3F, ESF) and then transformation to the sulfonate dendrimer by treatment with a base. This strategy also makes feasible the synthesis of a labelled sulfonate dendrimer (G2-S16-FITC) to be used as a molecular probe for in vivo experiments. Interestingly, G2-S16-FITC enters into human peripheral blood mononuclear cells (PBMCs).

7.
Int J Pharm ; 573: 118867, 2020 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-31765788

RESUMO

Heterofunctionalized gold nanoparticles (AuNPs) were obtained in a one pot reaction of gold precursor with cationic carbosilane dendrons (first to third generations, 1-3G) and (polyethylene)glycol (PEG) ligands in the presence of a reducing agent. The final dendron/PEG proportion on AuNPs depends on the initial dendron/PEG ratio (3/1, 1/1, 1/3) and dendron generation. AuNPs were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), ultraviolet spectroscopy (UV-VIS), thermogravimetric analysis (TGA), nuclear magnetic resonance (1H NMR) and zeta potential (ZP). Several assays have been carried out to determine the relevance of PEG/dendron ratio and dendron generation in the biomedical properties of PEGylated AuNPs and the results have been compared with those obtained for non-PEGylated AuNPs. Finally, analyses of PEG recognition by anti-PEG antibodies were carried out. In general, haemolysis, platelet aggregation and toxicity were reduced after PEGylation of AuNPs, the effect being dependent on dendron generation and dendron/PEG ratio. Dendron generation determines the exposure of PEG ligand and the interaction of this ligand with AuNPs environment. On the other hand, increasing PEG proportion diminishes toxicity but also favors interaction with antibodies.


Assuntos
Dendrímeros/toxicidade , Portadores de Fármacos/toxicidade , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Silanos/toxicidade , Cátions/química , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética/métodos , Química Farmacêutica/métodos , Dendrímeros/química , Portadores de Fármacos/química , Difusão Dinâmica da Luz , Eritrócitos/efeitos dos fármacos , Ouro/química , Células HeLa , Humanos , Leucócitos Mononucleares , Espectroscopia de Ressonância Magnética , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Agregação Plaquetária/efeitos dos fármacos , Polietilenoglicóis/química , Silanos/química , Testes de Toxicidade
8.
Front Microbiol ; 10: 2771, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866964

RESUMO

Antimicrobial proteins, like lysozymes produced by animals or bacteriophage lysins, enable the degradation of bacterial peptidoglycan (PG) and, consequently, lead to bacterial cell lysis. However, the activity of those enzymes is not satisfactory against gram-negative bacteria because of the presence of an outer membrane (OM) barrier. Lytic enzymes can therefore be combined with membrane-disrupting agents, such as dendritic silver nanoparticles. Nevertheless, a lipopolysaccharide (LPS), especially the smooth type, could be the main hindrance for highly charged nanoparticles to get direct access to the bacterial OM and to help lytic enzymes to reach their target PG. Herein, we have investigated the interactions of PEGylated carbosilane dendritic nanoparticles with P. aeruginosa 010 LPS in the presence of lysozymes and KP27 endolysin to find out the main aspects of the OM destabilization process. Our results showed that PEGylated dendronized AgNPs overcame the LPS barrier and enhanced the antibacterial effect of endolysin more efficiently than unPEGylated nanoparticles.

9.
Int J Pharm ; 569: 118591, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31394187

RESUMO

This work focuses on preparation of silver nanoparticles (AgNP) covered with cationic carbosilane dendrons and poly(ethylene glycol) (PEG). It is well known that AgNP and cationic carbosilane dendritic systems present antibacterial properties. On the other hand, PEG ligand provides antifouling properties and improved biocompatibility. Hence, combination of both ligands, carbosilane dendrons and PEG, on the AgNP surface can be a way to improve antibacterial capacity of AgNP. The new family of heterofunctionalized AgNP has been directly synthesized using silver precursor and cationic carbosilane dendrons and PEG ligands containing a thiol moiety. AgNP were characterized by TEM, TGA, UV, 1H NMR, DLS, Z potential, XRD. The antibacterial capacity of these systems was evaluated against E. coli and S. aureus. The results confirmed the influence of both silver core and cationic carbosilane dendrons on the activity of these systems. The behaviour obtained for PEGylated systems were slightly lower than for non-PEGylated AgNP. However, hemolysis assays demonstrated that this decrease was compensated for by the greater biocompatibility. To more completely characterize the improvements of PEGylation on dendronized AgNP, one non-PEGylated and one PEGylated AgNP were tested for resistance in a planktonic state. Both AgNPs barely affected the minimum inhibitory concentration (MIC) whereas reference antibiotics generated significant resistance. In addition, relevant improvement in biofilm inhibition was achieved by dendronized AgNP after PEGylation.


Assuntos
Antibacterianos/administração & dosagem , Dendrímeros/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Polietilenoglicóis/administração & dosagem , Silanos/administração & dosagem , Prata/administração & dosagem , Animais , Biofilmes/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Hemólise/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Ovinos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
10.
Colloids Surf B Biointerfaces ; 181: 360-368, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158698

RESUMO

Human immunodeficiency virus type 1 (HIV-1) remains a global public health problem. Detection and reduction of the rates of late diagnosis of HIV-1 infection are one of the main challenges in combating the HIV-1 epidemic. Magnetic nanoparticles (MNPs) have several characteristics that make them susceptible to capture HIV-1 of a wide range of biological samples reducing waiting times between the acquisition of HIV-1 infection and its detection by current techniques. Carbosilane dendrons decorated with peripheral carboxyl groups and alcoxysilane function at the focal point have been used to stabilize MNPs by co-precipitation method in one step. The characterization of these systems and of their carboxylate analogues was performed by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), ζ potential and thermal gravimetric analysis (TGA). The ability of carboxyl and carboxylate MNPs to capture R5-HIV-1 and X4-HIV-1 strains was evaluated to achieve a rapid and easy diagnostic method in order to reduce or eliminate the risk of HIV-1 transmission.


Assuntos
Dendrímeros/química , Infecções por HIV/diagnóstico , HIV-1/isolamento & purificação , Nanopartículas de Magnetita/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/farmacologia , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA