RESUMO
Constipation, a widespread gastrointestinal disorder, often leads to the exploration of natural remedies. This study examines the efficacy of Golden Flower Tibetan Tea Polysaccharides (GFTTPs) in alleviating constipation in mice. Chemical analyses reveal that GFTTPs possess O-H, carboxyl, carboxylic acid (-COOH), and C-O-C groups, alongside a porous crystal structure with thermal stability. In animal experiments, GFTTPs significantly upregulated aquaporin 3 (AQP3) and aquaporin 8 (AQP8) expressions in the colon, enhancing water absorption and reducing fecal water content. At a 400 mg/kg dosage, GFTTPs notably improved colonic tissue alterations and serum levels of excitatory neurotransmitters caused by loperamide hydrochloride. They also beneficially altered gut microbiota, increasing Coprococcus, Lactobacillus, and Pediococcus populations. These changes correlated with improved stool frequency, consistency, and weight in constipated mice. Importantly, GFTTPs at 200 and 400 mg/kg doses exhibited comparable effects to the normal control group in key parameters, such as gastrointestinal transit rate and fecal moisture. These findings suggest that GFTTPs may serve as a potent natural remedy for constipation, offering significant therapeutic potential within the context of gut health and with promising implications for human applications.
RESUMO
Chronic kidney disease (CKD) presents a formidable global health concern, affecting one in six adults over 25. This review explores the potential of phenolic compounds in managing CKD and its complications. By examining the existing research, we highlight their diverse biological activities and potential to combat CKD-related issues. We analyze the nutritional benefits, bioavailability, and safety profile of these compounds. While the clinical evidence is promising, preclinical studies offer valuable insights into underlying mechanisms, optimal dosages, and potential side effects. Further research is crucial to validate the therapeutic efficacy of phenolic compounds for CKD. We advocate for continued exploration of their innovative applications in food, pharmaceuticals, and nutraceuticals. This review aims to catalyze the scientific community's efforts to leverage phenolic compounds against CKD-related challenges.
Assuntos
Fenóis , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Fenóis/química , Fenóis/uso terapêutico , Fenóis/farmacologia , Animais , Suplementos Nutricionais , Disponibilidade BiológicaRESUMO
The historical use of plants as sources of natural compounds has persisted over time. Increasing the intake of bioactive substances shows significant potential for promoting overall well-being and health. This study delves into the pigments, phenolic composition, and profile, along with antioxidant properties, of leaf extracts rich in bioactives from plants in the Azores region, contributing to sustainable primary food production. Analyses encompassed chlorophylls, carotenoids, total phenols, ortho-diphenols, and flavonoids, as well as antioxidant capacity assessment, polyphenolic profiling, and quantification. Psidium guajava L. and Smallanthus sonchifolius (Poepp.) H.Rob. exhibited elevated chlorophyll content, while Colocasia esculenta (L.) Schott displayed the highest carotenoid levels. Annona cherimola Mill., Eriobotrya japonica (Thunb.) Lindl, and Psidium guajava L. demonstrated pronounced total phenols, ortho-diphenols, and flavonoids. These findings align with heightened antioxidant capacity. HPLC-DAD (high-performance liquid chromatography with diode-array detection) characterization unveiled elevated hydroxycinnamic acids in E. japonica and Ipomea batatas (L.) Lam. compared to A. cherimola Mill., while C. esculenta exhibited increased flavone content. Among the quantified compounds, flavonols were the ones that predominantly demonstrated contribution to the antioxidant capacity of these leaves. This research highlights Azorean leaf plants' antioxidant potential, fostering natural product development for better health.
RESUMO
Lentinula edodes, commonly known as shiitake mushroom, is renowned for its potential health advantages. This research delves into the often-overlooked by-product of shiitake cultivation, namely spent mushroom substrate (SMS), to explore its nutraceutical properties. The SMS samples were collected and subjected to different extraction methods, namely short or long agitation, and ultrasound-assisted extractions using different temperatures and distilled water or a 50% (v/v) ethanol as solvents. The extracts were tested for phenolic content (total phenols, ortho-diphenols, and flavonoids), antioxidant capacity (DPPH, 2,2-diphenyl-1 picrylhydrazyl; ABTS, 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid; and FRAP, ferric reducing antioxidant power), and antibacterial activity. The different extraction methods revealed substantial variations (p < 0.05) in phenolic composition and antioxidant capacity. The highest phenolic content and antioxidant capacity were achieved using 24 h extraction, agitation, 50 °C, and ethanol as the solvent. Furthermore, the extracted compounds displayed antibacterial activity in specific tested bacterial strains. This study highlights the nutraceutical potential of L. edodes' SMS, positioning it as a valuable dietary supplement for animal nutrition, with emphasis on its prebiotic properties. Hence, this research unveils the promising health benefits of SMS in both human and animal nutrition.
RESUMO
Prostate cancer (PCa) remains a significant global health concern, being a major cause of cancer morbidity and mortality worldwide. Furthermore, profound understanding of the disease is needed. Prostate inflammation caused by external or genetic factors is a central player in prostate carcinogenesis. However, the mechanisms underlying inflammation-driven PCa remain poorly understood. This review dissects the diagnosis methods for PCa and the pathophysiological mechanisms underlying the disease, clarifying the dynamic interplay between inflammation and leukocytes in promoting tumour development and spread. It provides updates on recent advances in elucidating and treating prostate carcinogenesis, and opens new insights for the use of bioactive compounds in PCa. Polyphenols, with their noteworthy antioxidant and anti-inflammatory properties, along with their synergistic potential when combined with conventional treatments, offer promising prospects for innovative therapeutic strategies. Evidence from the use of polyphenols and polyphenol-based nanoparticles in PCa revealed their positive effects in controlling tumour growth, proliferation, and metastasis. By consolidating the diverse features of PCa research, this review aims to contribute to increased understanding of the disease and stimulate further research into the role of polyphenols and polyphenol-based nanoparticles in its management.
RESUMO
In this comprehensive review, we delve into the myriad applications of spent mushroom substrate (SMS) in agricultural contexts, with a particular emphasis on its role in fostering sustainable poultry production. Our examination spans three key domains: the use of SMS in fertilizers, its impact on environmental factors and gas emissions, and its contribution to poultry nutrition. This review synthesizes findings from multiple studies that underscore the potential of composted SMS as a viable alternative to conventional inorganic fertilizers, effectively meeting crop nutrient needs while mitigating groundwater contamination risks. Moreover, we highlight the substantial environmental advantages associated with the utilization of SMS and poultry waste, including reductions in greenhouse gas emissions and the promotion of sustainable waste management practices. Additionally, we explore the promising outcomes of integrating SMS into animal feed formulations, which have demonstrated significant enhancements in livestock growth performance and overall health. In sum, this review underscores the versatility and untapped potential of SMS as a valuable agricultural resource, with a particular focus on its role in advancing sustainable practices, optimizing nutrient management, and harnessing the value of organic waste materials, especially in the context of poultry production.
RESUMO
The encapsulation of bioactive compounds, which spans phytochemicals, vitamins, antioxidants, and other precious substances, has risen to prominence as a crucial area of interest spanning various domains, including food, pharmaceuticals, and cosmetics. This investigation delved into the efficacy of distinct wall materials-whey protein isolate, high methoxy pectin, and gum arabic-when employed individually or in combination to encapsulate and preserve phenolic compounds and antioxidants during storage. The encapsulation process involved spray-drying bioactive compounds extracted from grapes. Over a span of 120 days, the stability of these encapsulated compounds was meticulously evaluated, encompassing assessments via different antioxidant capacity assays, phenolic content analyses, and high-performance liquid chromatography measurements. The modeling of retention kinetics during storage facilitated the comprehension of the release mechanisms. Notably, the findings underscore the pivotal role of wall materials in preserving these bioactive compounds, with each material or combination of materials exhibiting varying degrees of protective capacity. Remarkably, the synergistic blend of whey protein, pectin, and gum arabic showcased the utmost retention of bioactive compounds over this study's period. The amassed data distinctly show that an amalgamation of wall materials can indeed considerably enhance the stability of encapsulated bioactive compounds, presenting promising applications within the realms of both the food and pharmaceutical industries.
RESUMO
The residues generated in the wine industry (pomace, stems, seeds, wine lees, and grapevine shoots) are a potential source of bioactive compounds that can be used in other industries despite being sometimes underestimated. Different extraction methods using various solvents and extraction conditions are currently being investigated. Due to its natural occurrence in wines, safe behavior, and low toxicity when compared to other organic solvents, ethanol is used as an extracting agent. The aim of this study was to identify the winery by-product from the Região Demarcada do Douro and its corresponding extraction solvents that yields the most favorable results in (poly)phenols content and antioxidant capacity. To achieve this, five different ratios of ethanol: water, namely 0:100, 25:75, 50:50, 75:25, and 100:0 (v/v), for extracting the phenolic compounds were employed. Afterwards, the determination of total phenolic content (TPC), ortho-diphenols content (ODC), and flavonoid content (FC) as well as the antioxidant capacity of the obtained extracts using three different methods was performed. Since the best results of the spectrophotometric assays were obtained mostly with hydroethanolic extracts of stems (50:50, v/v), identification by HPLC-DAD has carried out. It was possible to conclude that the Tinta Roriz variety displayed the highest number of identified (poly)phenols.
RESUMO
Grape stems have emerged as a promising natural ingredient in the cosmetics industry due to their abundance of phenolic compounds, known for their antioxidant and anti-inflammatory properties. These compounds have shown great potential in promoting skin health, fighting signs of aging, and shielding against environmental stressors. With high concentrations of resveratrol, flavonoids, and tannins, grape stems have garnered attention from cosmetic scientists. Research has indicated that phenolic compounds extracted from grape stems possess potent antioxidant abilities, effectively combating free radicals that accelerate aging. Moreover, these compounds have demonstrated the capacity to shield the skin from UV damage, boost collagen production, and enhance skin elasticity. Cosmetic formulations incorporating grape stem extracts have displayed promising results in addressing various skin concerns, including reducing wrinkles, fine lines, and age spots, leading to a more youthful appearance. Additionally, grape stem extracts have exhibited anti-inflammatory properties, soothing irritated skin and diminishing redness. Exploring the potential of grape stem phenolic compounds for cosmetics paves the way for sustainable and natural beauty products. By harnessing the beauty benefits of grape stems, the cosmetics industry can provide effective and eco-friendly solutions for consumers seeking natural alternatives. Ongoing research holds the promise of innovative grape stem-based formulations that could revolutionize the cosmetics market, fully unlocking the potential of these extraordinary botanical treasures.
Assuntos
Cosméticos , Vitis , Antioxidantes/farmacologia , Fenóis/farmacologia , Extratos Vegetais/farmacologiaRESUMO
Chlorophylls play a crucial role in photosynthesis and are abundantly found in green fruits and vegetables that form an integral part of our diet. Although limited, existing studies suggest that these photosynthetic pigments and their derivatives possess therapeutic properties. These bioactive molecules exhibit a wide range of beneficial effects, including antioxidant, antimutagenic, antigenotoxic, anti-cancer, and anti-obesogenic activities. However, it is unfortunate that leafy materials and fruit peels often go to waste in the food supply chain, contributing to the prevailing issue of food waste in modern societies. Nevertheless, these overlooked materials contain valuable bioactive compounds, including chlorophylls, which offer significant health benefits. Consequently, exploring the potential of these discarded resources, such as utilizing them as functional food ingredients, aligns with the principles of a circular economy and presents exciting opportunities for exploitation.
Assuntos
Clorofila , Eliminação de Resíduos , Antioxidantes/análise , Dieta , Verduras , Frutas/químicaRESUMO
Microbial production of hyaluronic acid (HA) is an area of research that has been gaining attention in recent years due to the increasing demand for this biopolymer for several industrial applications. Hyaluronic acid is a linear, non-sulfated glycosaminoglycan that is widely distributed in nature and is mainly composed of repeating units of N-acetylglucosamine and glucuronic acid. It has a wide and unique range of properties such as viscoelasticity, lubrication, and hydration, which makes it an attractive material for several industrial applications such as cosmetics, pharmaceuticals, and medical devices. This review presents and discusses the available fermentation strategies to produce hyaluronic acid.