Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0303999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38781126

RESUMO

Serine integrases (Ints) are a family of site-specific recombinases (SSRs) encoded by some bacteriophages to integrate their genetic material into the genome of a host. Their ability to rearrange DNA sequences in different ways including inversion, excision, or insertion with no help from endogenous molecular machinery, confers important biotechnological value as genetic editing tools with high host plasticity. Despite advances in their use in prokaryotic cells, only a few Ints are currently used as gene editors in eukaryotes, partly due to the functional loss and cytotoxicity presented by some candidates in more complex organisms. To help expand the number of Ints available for the assembly of more complex multifunctional circuits in eukaryotic cells, this protocol describes a platform for the assembly and functional screening of serine-integrase-based genetic switches designed to control gene expression by directional inversions of DNA sequence orientation. The system consists of two sets of plasmids, an effector module and a reporter module, both sets assembled with regulatory components (as promoter and terminator regions) appropriate for expression in mammals, including humans, and plants. The complete method involves plasmid design, DNA delivery, testing and both molecular and phenotypical assessment of results. This platform presents a suitable workflow for the identification and functional validation of new tools for the genetic regulation and reprogramming of organisms with importance in different fields, from medical applications to crop enhancement, as shown by the initial results obtained. This protocol can be completed in 4 weeks for mammalian cells or up to 8 weeks for plant cells, considering cell culture or plant growth time.


Assuntos
Células Eucarióticas , Integrases , Integrases/metabolismo , Integrases/genética , Humanos , Células Eucarióticas/metabolismo , Plasmídeos/genética , Serina/metabolismo , Edição de Genes/métodos
2.
Cancers (Basel) ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36428671

RESUMO

Chimeric Antigen Receptor (CAR)-T cell immunotherapy revolutionized cancer treatment and consists of the genetic modification of T lymphocytes with a CAR gene, aiming to increase their ability to recognize and kill antigen-specific tumor cells. The dynamics of CAR-T cell responses in patients present multiphasic kinetics with distribution, expansion, contraction, and persistence phases. The characteristics and duration of each phase depend on the tumor type, the infused product, and patient-specific characteristics. We present a mathematical model that describes the multiphasic CAR-T cell dynamics resulting from the interplay between CAR-T and tumor cells, considering patient and product heterogeneities. The CAR-T cell population is divided into functional (distributed and effector), memory, and exhausted CAR-T cell phenotypes. The model is able to describe the diversity of CAR-T cell dynamical behaviors in different patients and hematological cancers as well as their therapy outcomes. Our results indicate that the joint assessment of the area under the concentration-time curve in the first 28 days and the corresponding fraction of non-exhausted CAR-T cells may be considered a potential marker to classify therapy responses. Overall, the analysis of different CAR-T cell phenotypes can be a key aspect for a better understanding of the whole CAR-T cell dynamics.

3.
Cancers (Basel) ; 14(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35158901

RESUMO

In this manuscript, we use an exactly solvable stochastic binary model for the regulation of gene expression to analyze the dynamics of response to a treatment aiming to modulate the number of transcripts of a master regulatory switching gene. The challenge is to combine multiple processes with different time scales to control the treatment response by a switching gene in an unavoidable noisy environment. To establish biologically relevant timescales for the parameters of the model, we select the RKIP gene and two non-specific drugs already known for changing RKIP levels in cancer cells. We demonstrate the usefulness of our method simulating three treatment scenarios aiming to reestablish RKIP gene expression dynamics toward a pre-cancerous state: (1) to increase the promoter's ON state duration; (2) to increase the mRNAs' synthesis rate; and (3) to increase both rates. We show that the pre-treatment kinetic rates of ON and OFF promoter switching speeds and mRNA synthesis and degradation will affect the heterogeneity and time for treatment response. Hence, we present a strategy for reaching increased average mRNA levels with diminished heterogeneity while reducing drug dosage by simultaneously targeting multiple kinetic rates that effectively represent the chemical processes underlying the regulation of gene expression. The decrease in heterogeneity of treatment response by a target gene helps to lower the chances of emergence of resistance. Our approach may be useful for inferring kinetic constants related to the expression of antimetastatic genes or oncogenes and for the design of multi-drug therapeutic strategies targeting the processes underpinning the expression of master regulatory genes.

4.
Cancers (Basel) ; 13(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208323

RESUMO

Immunotherapy has gained great momentum with chimeric antigen receptor T cell (CAR-T) therapy, in which patient's T lymphocytes are genetically manipulated to recognize tumor-specific antigens, increasing tumor elimination efficiency. In recent years, CAR-T cell immunotherapy for hematological malignancies achieved a great response rate in patients and is a very promising therapy for several other malignancies. Each new CAR design requires a preclinical proof-of-concept experiment using immunodeficient mouse models. The absence of a functional immune system in these mice makes them simple and suitable for use as mathematical models. In this work, we develop a three-population mathematical model to describe tumor response to CAR-T cell immunotherapy in immunodeficient mouse models, encompassing interactions between a non-solid tumor and CAR-T cells (effector and long-term memory). We account for several phenomena, such as tumor-induced immunosuppression, memory pool formation, and conversion of memory into effector CAR-T cells in the presence of new tumor cells. Individual donor and tumor specificities are considered uncertainties in the model parameters. Our model is able to reproduce several CAR-T cell immunotherapy scenarios, with different CAR receptors and tumor targets reported in the literature. We found that therapy effectiveness mostly depends on specific parameters such as the differentiation of effector to memory CAR-T cells, CAR-T cytotoxic capacity, tumor growth rate, and tumor-induced immunosuppression. In summary, our model can contribute to reducing and optimizing the number of in vivo experiments with in silico tests to select specific scenarios that could be tested in experimental research. Such an in silico laboratory is an easy-to-run open-source simulator, built on a Shiny R-based platform called CARTmath. It contains the results of this manuscript as examples and documentation. The developed model together with the CARTmath platform have potential use in assessing different CAR-T cell immunotherapy protocols and its associated efficacy, becoming an accessory for in silico trials.

5.
Genes (Basel) ; 12(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209776

RESUMO

Abnormal long non-coding RNAs (lncRNAs) expression has been documented to have oncogene or tumor suppressor functions in the development and progression of cancer, emerging as promising independent biomarkers for molecular cancer stratification and patients' prognosis. Examining the relationship between lncRNAs and the survival rates in malignancies creates new scenarios for precision medicine and targeted therapy. Breast cancer (BRCA) is a heterogeneous malignancy. Despite advances in its molecular classification, there are still gaps to explain in its multifaceted presentations and a substantial lack of biomarkers that can better predict patients' prognosis in response to different therapeutic strategies. Here, we performed a re-analysis of gene expression data generated using cDNA microarrays in a previous study of our group, aiming to identify differentially expressed lncRNAs (DELncRNAs) with a potential predictive value for response to treatment with taxanes in breast cancer patients. Results revealed 157 DELncRNAs (90 up- and 67 down-regulated). We validated these new biomarkers as having prognostic and predictive value for breast cancer using in silico analysis in public databases. Data from TCGA showed that compared to normal tissue, MIAT was up-regulated, while KCNQ1OT1, LOC100270804, and FLJ10038 were down-regulated in breast tumor tissues. KCNQ1OT1, LOC100270804, and FLJ10038 median levels were found to be significantly higher in the luminal subtype. The ROC plotter platform results showed that reduced expression of these three DElncRNAs was associated with breast cancer patients who did not respond to taxane treatment. Kaplan-Meier survival analysis revealed that a lower expression of the selected lncRNAs was significantly associated with worse relapse-free survival (RFS) in breast cancer patients. Further validation of the expression of these DELncRNAs might be helpful to better tailor breast cancer prognosis and treatment.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos , RNA Longo não Codificante/genética , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Docetaxel/uso terapêutico , Feminino , Humanos , RNA Longo não Codificante/metabolismo , Análise de Sobrevida , Transcriptoma
6.
Math Biosci Eng ; 17(5): 5477-5503, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33120562

RESUMO

This manuscript presents a comparison of noise properties exhibited by two stochastic binary models for: (i) a self-repressing gene; (ii) a repressed or activated externally regulating one. The stochastic models describe the dynamics of probability distributions governing two random variables, namely, protein numbers and the gene state as ON or OFF. In a previous work, we quantify noise in protein numbers by means of its Fano factor and write this quantity as a function of the covariance between the two random variables. Then we show that distributions governing the number of gene products can be super-Fano, Fano or sub-Fano if the covariance is, respectively, positive, null or negative. The latter condition is exclusive for the self-repressing gene and our analysis shows the conditions for which the Fano factor is a sufficient classifier of fluctuations in gene expression. In this work, we present the conditions for which the noise on the number of gene products generated from a self-repressing gene or an externally regulating one are quantitatively similar. That is important for inference of gene regulation from noise in gene expression quantitative data. Our results contribute to a classification of noise function in biological systems by theoretically demonstrating the mechanisms underpinning the higher precision in expression of a self-repressing gene in comparison with an externally regulated one.


Assuntos
Regulação da Expressão Gênica , Proteínas , Modelos Genéticos , Probabilidade , Processos Estocásticos
7.
Commun Biol ; 3(1): 255, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444777

RESUMO

Recently, new serine integrases have been identified, increasing the possibility of scaling up genomic modulation tools. Here, we describe the use of unidirectional genetic switches to evaluate the functionality of six serine integrases in different eukaryotic systems: the HEK 293T cell lineage, bovine fibroblasts and plant protoplasts. Moreover, integrase activity was also tested in human cell types of therapeutic interest: peripheral blood mononuclear cells (PBMCs), neural stem cells (NSCs) and undifferentiated embryonic stem (ES) cells. The switches were composed of plasmids designed to flip two different genetic parts driven by serine integrases. Cell-based assays were evaluated by measurement of EGFP fluorescence and by molecular analysis of attL/attR sites formation after integrase functionality. Our results demonstrate that all the integrases were capable of inverting the targeted DNA sequences, exhibiting distinct performances based on the cell type or the switchable genetic sequence. These results should support the development of tunable genetic circuits to regulate eukaryotic gene expression.


Assuntos
Arabidopsis/enzimologia , Fibroblastos/enzimologia , Integrases/genética , Plasmídeos/genética , Protoplastos/enzimologia , Recombinação Genética , Serina/genética , Animais , Bovinos , Humanos , Integrases/metabolismo , Leucócitos Mononucleares/enzimologia , Regiões Promotoras Genéticas , Serina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA