RESUMO
Based on the impact of volatile organic compounds (VOCs) on secondary metabolite pathways, a novel submerged volatile co-culture system was constructed, and the effects of thirteen fungal and bacterial VOCs were investigated on Ganoderma lucidum exopolysaccharides production. The results demonstrated at least a 2.2-fold increase in exopolysaccharide (EPS) specific production yield in 6 days submerged volatile co-culture of G. lucidum with Pleurotus ostreatus. Therefore, P. ostreatus was selected as a variable culture, and the effects of agitation speed, inoculum size, initial pH, and co-culture volume on EPSs production were investigated using a Taguchi L9 orthogonal array. Finally, the highest concentration of EPSs (3.35 ± 0.22 g L-1) was obtained under optimized conditions; initial pH 5.0, inoculum size 10%, 150 rpm, and 3:1 volume ratio of variable culture to main culture.
Assuntos
Técnicas de Cocultura , Microbiologia Industrial , Pleurotus , Polissacarídeos , Reishi , Bactérias , Fermentação , Microbiologia Industrial/métodos , Pleurotus/fisiologia , Polissacarídeos/biossíntese , Reishi/crescimento & desenvolvimento , Reishi/metabolismoRESUMO
Nowadays, Pichia pastoris is a well-known yeast for the production of recombinant proteins. The yield of protein production tightly depends on the copy number of the gene of interest into the host chromosome. Real-time PCR has been used as a high throughput method for molecular detection of gene copy number. In light of determining an absolute gene copy number, the reliability of the qPCR quantification standard is a major issue and it can be a potential source of errors in the final results. Since the literature on this issue is inconclusive, we set out to find a reliable quantification method that allows comparing results in different laboratories. We generated standard curves for two genomic loci (5'UTR AOX1 and ARG4) and for plasmid DNA carrying hGM-CSF coding sequence. These data was used to calculate the integrated hGM-CSFcDNA copy number in a recombinant P. pastoris clone. In our expriments the 5'UTR AOX1 gene showed a more accurate quantification standard, based on more efficient amplification and better reproducibility. The results obtained in this study showed that the differences in terms of structure and length between circular plasmid and linear gDNA could be the source of significant differences in the pattern of DNA amplification.
Assuntos
Dosagem de Genes , Proteínas Recombinantes/genética , Saccharomycetales/genética , DNA/genética , DNA Circular/genética , Genoma/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Organismos Geneticamente Modificados , Plasmídeos/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Proteínas Recombinantes/biossíntese , Reprodutibilidade dos TestesRESUMO
The production of the recombinant proteins under the control of AOX1 promoter is a one of the most common expression systems in the methylotrophic yeast Pichia pastoris which is induced by methanol. The application of this expression platform is restricted by the toxicity and inflammatory nature of methanol, especially in food and pharmaceutical products. Human granulocyte macrophage-colony stimulating factor (hGM-CSF) is an important pharmaceutical protein, playing a crucial role in the proliferation and differentiation of innate immune cells. In this study, a methanol-free expression platform for extracellular expression of hGM-CSF was developed. To attain this goal, a novel constructed expression vector pEP(α)101, carrying the FMD promoter regulating recombinant expression by glycerol derepression was designed. The optimized hGM-CSF gene was subcloned into pEP(α)101 and transformed into P. pastoris. The expression of rhGM-CSF in three different culture media were investigated. Based on the observed heterogeneous glycosylation pattern on SDS-PAGE and western blot, the glycoproteins were deglycosylated to remove carbohydrate units. According to the results, the novel methanol independent PFMD expression platform would be a suitable candidate for driving heterologous gene expression especially for the production of food-grade and therapeutically important recombinant proteins.
Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Pichia , Proteínas Recombinantes/biossíntese , Transfecção/métodos , Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Metanol , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/genéticaRESUMO
The secretory production of heterologous proteins in E. coli has revolutionized biotechnology. Efficient periplasmic production of foreign proteins in E. coli often requires a signal peptide to direct proteins to the periplasm. However, the presence of attached signal peptide does not guarantee periplasmic expression of target proteins. Overproduction of auxiliary proteins, such as chaperones can be a useful approach to enhance protein export. In the current study, three chaperone plasmid sets, including GroEL-GroES (GroELS), Dnak-Dnaj-GrpE (DnaKJE), and trigger factor (TF), were coexpressed in E. coli BL21 (DE3) in a pairwise manner with two pET22-b vectors carrying the recombinant hirudin-PA (Hir) gene and different signal sequences alkaline phosphatase (PhoA) and l-asparaginase II (l-ASP). Overexpression of cytoplasmic combinations of molecular chaperones containing GroELS and DnaKJE with PhoAHir increased the secretory production of PhoAHir by 2.6fold (pâ¯<â¯0.05) and 3.5fold (pâ¯<â¯0.01) compared with their controls, respectively. By contrast, secretory production of PhoAHir significantly reduced in the presence of overexpressed TF (pâ¯=â¯0.02). Further, periplasmic expression of l-ASP was significantly increased only in the presence of DnaKJE (pâ¯=â¯0.04). These findings suggest that using molecular chaperones can be helpful for improving periplasmic expression of Hir. However, tagged signal peptides may affect the physicochemical properties and secondary and tertiary structures of mature Hir, which may alter their interactions with chaperones. Hence, using overexpressed chaperones has various effects on secretory production of PhoAHir and l-ASPHir.
Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Hirudinas/genética , Sanguessugas/genética , Chaperonas Moleculares/genética , Animais , Chaperonina 10/genética , Chaperonina 60/genética , Clonagem Molecular/métodos , Plasmídeos/genética , Proteínas Recombinantes/genética , Regulação para CimaRESUMO
EndoglucanaseII (Cel5A) of Trichoderma reesei is widely used industrially with the high catalytic efficiency, but it is not stable high temperatures. Structural comparison with the closest thermophilic endoglucanase homolog, Cel5A from Thermoascus aurantiacus, demonstrates disulfide bond differences. Replacement of Cysteine99 with Valine and Cysteine323 with Histidine by site directed mutagenesis caused elimination of two disulfide bonds. Recombinant expression in Pichia pastoris showed the catalytic efficiency (kcat/Km) increment toward CMC for single mutant enzymes, C99V and C323H, about 1.87 and 1.3 folded respectively. This indicates that the elimination of disulfide bond in substrate binding cleft around the catalytic domain of mutant EndoglucanaseII may be increased the flexibility of protein, to form a suitable E-S complex. In direct contrast with previous studies suggesting the existence of disulfide bonds increase the protein stability, the results showed mutant endoglucanase enzymes with disulfide bond reduction have higher thermal stability. The thermal stability of C99V and C323H in 80⯰C were increased 2.4 and 2.34 folded, respectively. In this project, theoretical data had a good agreement with the experimental results. Because of high enzyme activity and thermal stability, both of C99V and C323H mutant have high potential suitable for different industrial applications.
Assuntos
Celulase/genética , Celulase/metabolismo , Dissulfetos/química , Mutagênese Sítio-Dirigida , Temperatura , Trichoderma/enzimologia , Celulase/química , Estabilidade Enzimática/genética , Cinética , Modelos Moleculares , Mutação , Conformação ProteicaRESUMO
Bioconversion of cellulosic material into glucose needs cellulase enzymes. One of the most important organisms that produces cellulases is Trichoderma reesei, whose cellulose enzymes are probably the most widely used in the industry. However, these enzymes are not stable enough at high pH and temperatures. The optimized synthetic endoglucanase II gene with Pichia pastoris codon preferences was secretary expressed in P. pastoris. Recombinant enzyme characterization showed maximum activity at pH 4.8 and temperature 75 °C, and it demonstrated increasing thermal stability in high temperature. The enzyme maintained its activity in a wide pH range from 3.5 to 6.5. The optimization of fermentation medium was carried out in shaking flasks. Recombinant protein expression at optimum conditions (pH 7, temperature 25 °C, and 1 % methanol induction) for 72 h demonstrated 2,358.8 U/ml endoglucanase activity units. To our knowledge, this is the highest acidic thermophilic endoglucanase activity that is reported in crude intracellular medium in P. pastoris. We conclude that P. pastoris is an appropriate host for high-level expression of optimized endoglucanase gene with improved thermal stability.
Assuntos
Celulase/metabolismo , Pichia/enzimologiaRESUMO
The synthesized cDNA coding for AChE (acetylcholinesterase) was subcloned in pENTR/D-TOPO plasmid and expressed using baculovirus expression vector and Sf9 insect cells as host. Purified enzyme (specific activity 36374 micromol x min(-1) x mg(-1)) was immobilized on pre-activated perlite (a porous silica matrix) by silanization and glutaraldehyde treatment. The total enzyme immobilized was then measured, and total and specific activity of immobilized AChE was compared with that of soluble enzyme. Using this perlite support not only resulted in a great amount of maintained immobilized enzyme activity (more than 70%, specific activity 26238 micromolx min(-1) x mg(-1)), but also significantly improved stability against temperature (8.7- and 17.7-fold at 50 and 60 degrees C respectively), urea (2.7-fold) and acetonitrile (1.7-fold). Kinetic studies showed that the K(m) value for immobilized enzyme is very similar to the soluble one (0.088 and 0.081 mM respectively). In addition, immobilized enzymes retained 80% of their initial activity after 16 consecutive reactor batch cycles. A comparison of the inhibitory effect of paraoxon on soluble and immobilized AChE showed that immobilization increased the linearity of the inhibition plot particularly in the range 0.1 nM-0.1 microM.