Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37174421

RESUMO

One significant food group that is part of our daily diet is the dairy group, and both research and industry are actively involved to meet the increasing requirement for plant-based dairy alternatives (PBDAs). The production tendency of PBDAs is growing with a predictable rate of over 18.5% in 2023 from 7.4% at the moment. A multitude of sources can be used for development such as cereals, pseudocereals, legumes, nuts, and seeds to obtain food products such as vegetal milk, cheese, cream, yogurt, butter, and different sweets, such as ice cream, which have nearly similar nutritional profiles to those of animal-origin products. Increased interest in PBDAs is manifested in groups with special dietary needs (e.g., lactose intolerant individuals, pregnant women, newborns, and the elderly) or with pathologies such as metabolic syndromes, dermatological diseases, and arthritis. In spite of the vast range of production perspectives, certain industrial challenges arise during development, such as processing and preservation technologies. This paper aims at providing an overview of the currently available PBDAs based on recent studies selected from the electronic databases PubMed, Web of Science Core Collection, and Scopus. We found 148 publications regarding PBDAs in correlation with their nutritional and technological aspects, together with the implications in terms of health. Therefore, this review focuses on the relationship between plant-based alternatives for dairy products and the human diet, from the raw material to the final products, including the industrial processes and health-related concerns.

2.
Gels ; 8(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36005125

RESUMO

Nowadays, edible materials such as polysaccharides have gained attention due to their valuable attributes, especially gelling property. Polysaccharide-based edible gels (PEGs) can be classified as (i) hydrogels, (ii) oleogels and bigels, (iii) and aerogels, cryogels and xerogels, respectively. PEGs have different characteristics and benefits depending on the functional groups of polysaccharide chains (e.g., carboxylic, sulphonic, amino, methoxyl) and on the preparation method. However, PEGs are found in the incipient phase of research and most studies are related to their preparation, characterization, sustainable raw materials, and applicability. Furthermore, all these aspects are treated separately for each class of PEG, without offering an overview of those already obtained PEGs. The novelty of this manuscript is to offer an overview of the classification, definition, formulation, and characterization of PEGs. Furthermore, the applicability of PEGs in the food sector (e.g., food packaging, improving food profile agent, delivery systems) and in the medical/pharmaceutical sector is also critically discussed. Ultimately, the correlation between PEG consumption and polysaccharides properties for human health (e.g., intestinal microecology, "bridge effect" in obesity, gut microbiota) are critically discussed for the first time. Bigels may be valuable for use as ink for 3D food printing in personalized diets for human health treatment. PEGs have a significant role in developing smart materials as both ingredients and coatings and methods, and techniques for exploring PEGs are essential. PEGs as carriers of bioactive compounds have a demonstrated effect on obesity. All the physical, chemical, and biological interactions among PEGs and other organic and inorganic structures should be investigated.

3.
Antioxidants (Basel) ; 10(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34829578

RESUMO

Oxidative stress represents the underlying cause of many chronic diseases in human; therefore, the development of potent antioxidant compounds for preventing or treating such conditions is useful. Starting from the good antioxidant and antiradical properties identified for the previously reported Dihydroxy-Phenyl-Thiazol-Hydrazinium chloride (DPTH), we synthesized a congeneric series of phenolic thiazoles. The radical scavenging activity, and the antioxidant and chelation potential were assessed in vitro, a series of quantum descriptors were calculated, and the electrochemical behavior of the synthesized compounds was studied to evaluate the impact on the antioxidant and antiradical activities. In addition, their antibacterial and antifungal properties were evaluated against seven aerobic bacterial strains and a strain of C. albicans, and their cytotoxicity was assessed in vitro. Compounds 5a-b, 7a-b and 8a-b presented remarkable antioxidant and antiradical properties, and compounds 5a-b, 7a and 8a displayed good Cu+2 chelating activity. Compounds 7a and 8a were very active against P. aeruginosa ATCC 27853 compared to norfloxacin, and proved less cytotoxic than ascorbic acid against the human keratinocyte cell line (HaCaT cells, CLS-300493). Several phenolic compounds from the synthesized series presented excellent antioxidant activity and notable anti-Pseudomonas potential.

4.
Beilstein J Org Chem ; 16: 2929-2936, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335600

RESUMO

This work describes an efficient, simple, and ecofriendly sonochemical procedure for the preparation of new α-(arylamino)acetonitrile derivatives C-substituted with phenothiazine or ferrocene units. The synthetic protocol is based on the Strecker reaction of a (hetero)aryl aldimine substrate with trimethylsilyl cyanide (TMSCN) in poly(ethylene glycol) (PEG) solution. The advantages of the sonochemical versus the conventional α-(arylamino)acetonitrile synthesis are the significantly shorter reaction time (30 min instead of 72 hours), the higher purity and the easier separation of the product that precipitated from the reaction mixture in crystalline form as depicted by scanning electron microscopy (SEM) analysis. The single crystal X-ray diffraction analysis disclosed the arrangement of the α-(arylamino)acetonitrile molecules in the aggregated crystalline state as a racemic mixture. The mutagenic/antimutagenic potential for three representative derivatives containing phenothiazinyl, ferrocenyl, and phenyl units, respectively, was evaluated by the Ames Salmonella/microsome test using S. typhimurium TA98 and TA100 strains with and without metabolic activation. The preliminary screening results pointed out that the C-(hetero)aryl-α-(arylamino)acetonitrile derivatives can be considered genotoxically safe and possibly antimutagenic.

5.
Molecules ; 25(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121062

RESUMO

Herein we report the synthesis of two novel series of 1,3-thiazole derivatives having a lipophilic C4-substituent on account of the increasing need for novel and versatile antifungal drugs for the treatment of resistant Candida sp.-based infections. Following their structural characterization, the anti-Candida activity was evaluated in vitro while using the broth microdilution method. Three compounds exhibited lower Minimum Inhibitory Concentration (MIC) values when compared to fluconazole, being used as the reference antifungal drug. An in silico molecular docking study was subsequently carried out in order to gain more insight into the antifungal mechanism of action, while using lanosterol-C14α-demethylase as the target enzyme. Fluorescence microscopy was employed to further investigate the cellular target of the most promising molecule, with the obtained results confirming its damaging effect towards the fungal cell membrane integrity. Finally, the distribution and the pharmacological potential in vivo of the novel thiazole derivatives was investigated through the study of their binding interaction with bovine serum albumin, while using fluorescence spectroscopy.


Assuntos
Antifúngicos , Candida/crescimento & desenvolvimento , Soroalbumina Bovina/química , Tiazóis , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA