Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6692): eadj9989, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603486

RESUMO

Epoxy resin thermosets (ERTs) are an important class of polymeric materials. However, owing to their highly cross-linked nature, they suffer from poor recyclability, which contributes to an unacceptable level of environmental pollution. There is a clear need for the design of inherently recyclable ERTs that are based on renewable resources. We present the synthesis and closed-loop recycling of a fully lignocellulose-derivable epoxy resin (DGF/MBCA), prepared from dimethyl ester of 2,5-furandicarboxylic acid (DMFD), 4,4'-methylenebis(cyclohexylamine) (MBCA), and glycidol, which displays excellent thermomechanical properties (a glass transition temperature of 170°C, and a storage modulus at 25°C of 1.2 gigapascals). Notably, the material undergoes methanolysis in the absence of any catalyst, regenerating 90% of the original DMFD. The diamine MBCA and glycidol can subsequently be reformed by acetolysis. Application and recycling of DGF/MBCA in glass and plant fiber composites are demonstrated.

2.
Angew Chem Int Ed Engl ; 63(4): e202308131, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37840425

RESUMO

Deriving active pharmaceutical agents from renewable resources is crucial to increasing the economic feasibility of modern biorefineries and promises to alleviate critical supply-chain dependencies in pharma manufacturing. Our multidisciplinary approach combines research in lignin-first biorefining, sustainable catalysis, and alternative solvents with bioactivity screening, an in vivo efficacy study, and a structural-similarity search. The resulting sustainable path to novel anti-infective, anti-inflammatory, and anticancer molecules enabled the rapid identification of frontrunners for key therapeutic indications, including an anti-infective against the priority pathogen Streptococcus pneumoniae with efficacy in vivo and promising plasma and metabolic stability. Our catalytic methods provided straightforward access, inspired by the innate structural features of lignin, to synthetically challenging biologically active molecules with the core structure of dopamine, namely, tetrahydroisoquinolines, quinazolinones, 3-arylindoles and the natural product tetrahydropapaveroline. Our diverse array of atom-economic transformations produces only harmless side products and uses benign reaction media, such as tunable deep eutectic solvents for modulating reactivity in challenging cyclization steps.


Assuntos
Descoberta de Drogas , Lignina , Lignina/química , Solventes/química , Catálise , Biomassa
3.
ChemSusChem ; 17(3): e202301374, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37988183

RESUMO

The development of environmentally friendly methods for the valorization of important phenolic platform chemicals originating directly from lignin-first depolymerization into value-added N-chemicals, such as aniline derivatives, is of high industrial interest. In this work, we tackle this challenging transformation by the judicious combination of electrochemical conversion and chemical functionalization steps. In the first step, lignin-derived para-substituted guaiacols and syringols undergo an atom-efficient, room-temperature anodic oxidation using methanol both as solvent and reagent towards the formation of the corresponding cyclohexadienone derivatives, which are subsequently converted to synthetically challenging ortho-methoxy substituted anilines by reaction with ethyl glycinate hydrochloride under mild conditions. The developed method was applied to crude lignin depolymerization bio-oils, derived from reductive catalytic fractionation (RCF) mediated either by copper-doped porous metal oxide (Cu20 PMO) or Ru/C, allowing the selective production of 4-propanol-2-methoxyaniline (1Gb) and 4-propyl-2-methoxyaniline (2Gb), respectively, from pine lignocellulose. Finally, the application of 2Gb was further studied in the synthesis of carbazole 2Gc, a lignin-derived analogue of biologically active alkaloid murrayafoline A.

4.
Chem Commun (Camb) ; 59(66): 9929-9951, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37526604

RESUMO

Lignin holds tremendous and versatile possibilities to produce value-added chemicals and high performing polymeric materials. Over the years, different cutting-edge lignin depolymerization methodologies have been developed, mainly focusing on achieving excellent yields of mono-phenolic products, some even approaching the theoretical maximum. However, due to lignin's inherent heterogeneity and recalcitrance, its depolymerization leads to relatively complex product streams, also containing dimers, and higher molecular weight fragments in substantial quantities. The subsequent chemo-catalytic valorization of these higher molecular weight streams, containing difficult-to-break, mainly C-C covalent bonds, is tremendously challenging, and has consequently received much less attention. In this minireview, we present an overview of recent advances on the development of sustainable biorefinery strategies aimed at the production of well-defined chemicals and polymeric materials, the prime focus being on depolymerized lignin oils, containing high molecular weight fractions. The key central unit operation to achieve this is (bio)catalytic funneling, which holds great potential to overcome separation and purification challenges.

5.
ACS Sustain Chem Eng ; 11(7): 2819-2829, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36844751

RESUMO

Polyesters are an important class of thermoplastic polymers, and there is a clear demand to find high-performing, recyclable, and renewable alternatives. In this contribution, we describe a range of fully bio-based polyesters obtained upon the polycondensation of the lignin-derived bicyclic diol 4,4'-methylenebiscyclohexanol (MBC) with various cellulose-derived diesters. Interestingly, the use of MBC in combination with either dimethyl terephthalate (DMTA) or dimethyl furan-2,5-dicarboxylate (DMFD) resulted in polymers with industrially relevant glass transition temperatures in the 103-142 °C range and high decomposition temperatures (261-365 °C range). Since MBC is obtained as a mixture of three distinct isomers, in-depth NMR-based structural characterization of the MBC isomers and thereof derived polymers is provided. Moreover, a practical method for the separation of all MBC isomers is presented. Interestingly, clear effects on the glass transition, melting, and decomposition temperatures, as well as polymer solubility, were evidenced with the use of isomerically pure MBC. Importantly, the polyesters can be efficiently depolymerized by methanolysis with an MBC diol recovery yield of up to 90%. The catalytic hydrodeoxygenation of the recovered MBC into two high-performance specific jet fuel additives was demonstrated as an attractive end-of-life option.

6.
Polym Chem ; 14(8): 907-912, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36846093

RESUMO

In this work, we have described a family of bio-based polycarbonates (PC-MBC) based on the unique lignin-derived aliphatic diol 4,4'-methylenebiscyclohexanol (MBC) that was sustainably sourced from lignin oxidation mixture. The detailed structure analysis of these polycarbonates has been confirmed by a series of 2D NMR (HSQC and COSY) characterizations. Depending on the stereoisomerism of MBC, the PC-MBC displayed a wide achievable T g range of 117-174 °C and high T d5% of >310 °C by variation of the ratio of the stereoisomers of MBC, offering great substitution perspectives towards a bisphenol-containing polycarbonates. Nonetheless, the most here presented PC-MBC polycarbonates were film-forming and transparent.

7.
Green Chem ; 25(1): 211-220, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36685710

RESUMO

The complete utilization of all lignin depolymerization streams obtained from the reductive catalytic fractionation (RCF) of woody biomass into high-value-added compounds is a timely and challenging objective. Here, we present a catalytic methodology to transform beech lignin-derived dimers and oligomers (DO) into well-defined 1,4-cyclohexanediol and 1,4-cyclohexanediamine. The latter two compounds have vast industrial relevance as monomers for polymer synthesis as well as pharmaceutical building blocks. The proposed two-step catalytic sequence involves the use of the commercially available RANEY® Ni catalyst. Therefore, the first step involves the efficient defunctionalization of lignin-derived 2,6-dimethoxybenzoquinone (DMBQ) into 1,4-cyclohexanediol (14CHDO) in 86.5% molar yield, representing a 10.7 wt% yield calculated on a DO weight basis. The second step concerns the highly selective amination of 1,4-cyclohexanediol with ammonia to give 1,4-cyclohexanediamine (14CHDA) in near quantitative yield. The ability to use RANEY® Ni and ammonia in this process holds great potential for future industrial synthesis of 1,4-cyclohexanediamine from renewable resources.

8.
Catal Sci Technol ; 12(19): 5908-5916, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36324826

RESUMO

Primary amines are crucially important building blocks for the synthesis of a wide range of industrially relevant products. Our comprehensive catalytic strategy presented here allows diverse primary amines from lignocellulosic biomass to be sourced in a straightforward manner and with minimal purification effort. The core of the methodology is the efficient RANEY® Ni-catalyzed hydrogen-borrowing amination (with ammonia) of the alcohol intermediates, namely alkyl-phenol derivatives as well as aliphatic alcohols, obtained through the two-stage LignoFlex process. Hereby the first stage entails the copper-doped porous metal oxide (Cu20PMO) catalyzed reductive catalytic fractionation (RCF) of pine lignocellulose into a crude bio-oil, rich in dihydroconiferyl alcohol (1G), which could be converted into dihydroconiferyl amine (1G amine) in high selectivity using ammonia gas, by applying our selective amination protocol. Notably also, the crude RCF-oil directly afforded 1G amine in a high 4.6 wt% isolated yield (based on lignin content). Finally it was also shown that the here developed Ni-catalysed heterogeneous catalytic procedure was equally capable of transforming a range of aliphatic linear/cyclic primary/secondary alcohols - available from the second stage of the LignoFlex procedure - into their respective primary amines.

9.
ChemSusChem ; 15(18): e202200914, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35871610

RESUMO

Cyclic primary amines are elementary building blocks to many fine chemicals, pharmaceuticals, and polymers. Here, a powerful one-pot Raney Ni-based catalytic strategy was developed to transform guaiacol into cyclohexylamine using NH3 (7 bar) and H2 (10 bar) in up to 94 % yield. The methodology was extendable to the conversion of a wider range of guaiacols and syringols into their corresponding cyclohexylamines. Notably, a crude bio-oil originating from the reductive catalytic fractionation of birch lignocellulose was transformed into a product mixture rich in 4-propylcyclohexylamine, constituting an interesting case of catalytic funneling. The isolated yield of the desired 4-propylcyclohexylamine reached as high as 7 wt % (on lignin basis). Preliminary mechanistic studies pointed at the consecutive occurrence of three key catalytic transformations, namely, demethoxylation, hydrogenation, and amination.


Assuntos
Cicloexilaminas , Lignina , Guaiacol , Preparações Farmacêuticas , Pirogalol/análogos & derivados
10.
Green Chem ; 24(9): 3689-3696, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35694221

RESUMO

Lignin is the largest natural source of functionalized aromatics on the planet, therefore exploiting its inherent structural features for the synthesis of aromatic products is a timely and ambitious goal. While the recently developed lignin depolymerization strategies gave rise to well-defined aromatic platform chemicals, the diversification of these structures, especially toward high-end applications is still poorly addressed. Molecular motors and switches have found widespread application in many important areas such as targeted drug delivery systems, responsive coatings for self-healing surfaces, paints and resins or muscles for soft robotics. They typically comprise a functionalized aromatic backbone, yet their synthesis from lignin has not been considered before. In this contribution, we showcase the synthesis of a novel light-driven unidirectional molecular motor from the specific aromatic platform chemical 4-(3-hydroxypropyl)-2,6-dimethoxyphenol (dihydrosynapyl alcohol) that can be directly obtained from lignocellulose via a reductive catalytic fractionation strategy. The synthetic path takes into account the principles of green chemistry and aims to maintain the intrinsic functionality of the lignin-derived platform molecule.

11.
Nat Commun ; 13(1): 3376, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697677

RESUMO

Polyethylene terephthalate is one of the most abundantly used polymers, but also a significant pollutant in oceans. Due to growing environmental concerns, polyethylene terephthalate alternatives are highly sought after. Here we present readily recyclable polyethylene terephthalate analogues, made entirely from woody biomass. Central to the concept is a two-step noble metal free catalytic sequence (Cu20-PMO catalyzed reductive catalytic fractionation and Raney Ni mediated catalytic funneling) that allows for obtaining a single aliphatic diol 4-(3-hydroxypropyl) cyclohexan-1-ol in high isolated yield (11.7 wt% on lignin basis), as well as other product streams that are converted to fuels, achieving a total carbon yield of 29.5%. The diol 4-(3-hydroxypropyl) cyclohexan-1-ol is co-polymerized with methyl esters of terephthalic acid and furan dicarboxylic acid, both of which can be derived from the cellulose residues, to obtain polyesters with competitive Mw and thermal properties (Tg of 70-90 °C). The polymers show excellent chemical recyclability in methanol and are thus promising candidates for the circular economy.


Assuntos
Lignina , Polietilenotereftalatos , Biomassa , Lignina/química , Polímeros
12.
Chem Ing Tech ; 94(11): 1808-1817, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36632530

RESUMO

Diamines are important industrial chemicals. In this paper we outline the feasibility of lignocellulose as a source of diol-containing molecules. We also illustrate the possibility of turning these diols into their diamines in good to excellent yields. Central to these transformations is the use of commercially available Raney Ni. For diol formation, the Raney Ni engages in hydrogenation and often also demethoxylation, that way funneling multiple components to one single molecule. For diamine formation, Raney Ni catalyzes hydrogen-borrowing mediated diamination in the presence of NH3.

13.
Nat Commun ; 12(1): 5424, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521828

RESUMO

Stabilization of reactive intermediates is an enabling concept in biomass fractionation and depolymerization. Deep eutectic solvents (DES) are intriguing green reaction media for biomass processing; however undesired lignin condensation is a typical drawback for most acid-based DES fractionation processes. Here we describe ternary DES systems composed of choline chloride and oxalic acid, additionally incorporating ethylene glycol (or other diols) that provide the desired 'stabilization' function for efficient lignocellulose fractionation, preserving the quality of all lignocellulose constituents. The obtained ethylene-glycol protected lignin displays high ß-O-4 content (up to 53 per 100 aromatic units) and can be readily depolymerized to distinct monophenolic products. The cellulose residues, free from condensed lignin particles, deliver up to 95.9 ± 2.12% glucose yield upon enzymatic digestion. The DES can be recovered with high yield and purity and re-used with good efficiency. Notably, we have shown that the reactivity of the ß-O-4 linkage in model compounds can be steered towards either cleavage or stabilization, depending on DES composition, demonstrating the advantage of the modular DES composition.

14.
ChemSusChem ; 14(11): 2303-2307, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-33961350

RESUMO

The direct functionalization of naturally abundant chiral scaffolds such as α-amino acid esters or amides with widely abundant alcohols, without any racemization, is a demanding transformation that is of central importance for the synthesis of bio-active compounds. Herein a robust and general method was developed for the direct N-alkylation of α-amino acid esters and amides with alcohols. This powerful ruthenium-catalyzed methodology is atom-economic, base-free, and allowed for excellent retention of stereochemical integrity. The use of diphenylphosphate as additive was crucial for significantly enhancing reactivity and product selectivity. Notably, the only by-product was water and both substrates could be potentially derived from renewable resources.

15.
iScience ; 24(3): 102211, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33733071

RESUMO

Lignin, the richest source of renewable aromatics on the planet, is an intriguing raw material for the construction of value-added aromatics. In the past decade, much progress has been made regarding the development of efficient lignin depolymerization methods, able to produce specific monophenol derivatives in high-enough selectivity and yields. This now serves as an excellent basis for developing powerful downstream conversion strategies toward a wide range of products, including fine chemical building blocks. The inherent structural features of lignin-derived platform chemicals undoubtedly inspire the development of novel, creative, atom-economic synthetic routes toward biologically active molecules or natural products. In this perspective we attempt to bridge the structural features of lignin-derived platform chemicals with existing synthetic strategies toward the construction of heterocycles and provide a summary of efforts for the production of natural products from aromatics that can be, in principle, obtained from lignin. Last, we comment on the latest efforts that present entire value-chains from wood to valuable pharmaceutically relevant compounds.

16.
ACS Sustain Chem Eng ; 9(5): 2388-2399, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33585085

RESUMO

Acidolysis in conjunction with stabilization of reactive intermediates has emerged as one of the most powerful methods of lignin depolymerization that leads to high aromatic monomer yields. In particular, stabilization of reactive aldehydes using ethylene glycol results in the selective formation of the corresponding cyclic acetals (1,3-dioxolane derivatives) from model compounds, lignin, and even from softwood lignocellulose. Given the high practical utility of this method for future biorefineries, a deeper understanding of the method is desired. Here, we aim to elucidate key mechanistic questions utilizing a combination of experimental and multilevel computational approaches. The multiscale computational protocol used, based on ReaxFF molecular dynamics, represents a realistic scenario, where a typical experimental setup can be reproduced confidently given the explicit molecules of the solute, catalyst, and reagent. The nudged elastic band (NEB) approach allowed us to characterize the key intermolecular interactions involved in the reaction paths leading to crucial intermediates and products. The high level of detail obtained clearly revealed for the first time the unique role of sulfuric acid as a proton donor and acceptor in lignin ß-O-4 acidolysis as well as the reaction pathways for ethylene glycol stabilization, and the difference in reactivity between compounds with different methoxy substituents.

17.
ChemSusChem ; 13(19): 5199-5212, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32748524

RESUMO

The lignin-first strategy has emerged as one of the most powerful approaches for generating novel platform chemicals from lignin by efficient depolymerization of native lignin. Because of the emergence of this novel depolymerization method and the definition of viable platform chemicals, future focus will soon shift towards innovative downstream processing strategies. Very recently, many interesting approaches have emerged that describe the production of valuable products across the whole value chain, including bulk and fine chemical building blocks, and several concrete examples have been developed for the production of polymers, pharmaceutically relevant compounds, or fuels. This Minireview provides an overview of these recent advances. After a short summary of catalytic systems for obtaining aromatic monomers, a comprehensive discussion on their separation and applications is given. This Minireview will fill the gap in biorefinery between deriving high yields of lignin monomers and tapping into their potential for making valuable consumer products.

18.
Molecules ; 25(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570887

RESUMO

Currently, valorization of lignocellulosic biomass almost exclusively focuses on the production of pulp, paper, and bioethanol from its holocellulose constituent, while the remaining lignin part that comprises the highest carbon content, is burned and treated as waste. Lignin has a complex structure built up from propylphenolic subunits; therefore, its valorization to value-added products (aromatics, phenolics, biogasoline, etc.) is highly desirable. However, during the pulping processes, the original structure of native lignin changes to technical lignin. Due to this extensive structural modification, involving the cleavage of the ß-O-4 moieties and the formation of recalcitrant C-C bonds, its catalytic depolymerization requires harsh reaction conditions. In order to apply mild conditions and to gain fewer and uniform products, a new strategy has emerged in the past few years, named 'lignin-first' or 'reductive catalytic fractionation' (RCF). This signifies lignin disassembly prior to carbohydrate valorization. The aim of the present work is to follow historically, year-by-year, the development of 'lignin-first' approach. A compact summary of reached achievements, future perspectives and remaining challenges is also given at the end of the review.


Assuntos
Fracionamento Químico , Lignina/química , Catálise
19.
ChemSusChem ; 13(17): 4468-4477, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32103576

RESUMO

A mild lignin-first acidolysis process (140 °C, 40 min) was developed using the benign solvent dimethyl carbonate (DMC) and ethylene glycol (EG) as a stabilization agent/solvent to produce a high yield of aromatic monophenols directly from softwood lignocellulose (pine, spruce, cedar, and Douglas fir) with a depolymerization efficiency of 77-98 %. Under the optimized conditions (140 °C, 40 min, 400 wt % EG and 2 wt % H2 SO4 to pinewood), up to 9 wt % of the aromatic monophenol was produced, reaching a degree of delignification in pinewood of 77 %. Cellulose was also preserved, as evidenced by a 85 % glucose yield after enzymatic digestion. An in-depth analysis of the depolymerization oil was conducted by using GC-MS, HPLC, 2 D-NMR, and size-exclusion chromatography, which provided structural insights into lignin-derived dimers and oligomers and the composition of the sugars and derived molecules. Mass balance evaluation was performed.

20.
Nat Rev Chem ; 4(6): 311-330, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37127959

RESUMO

A central feature of most lignocellulosic-biomass-valorization strategies is the depolymerization of all its three major constituents: cellulose and hemicellulose to simple sugars, and lignin to phenolic monomers. However, reactive intermediates, generally resulting from dehydration reactions, can participate in undesirable condensation pathways during biomass deconstruction, which have posed fundamental challenges to commercial biomass valorization. Thus, new strategies specifically aim to suppress condensations of reactive intermediates, either avoiding their formation by functionalizing the native structure or intermediates or selectively transforming these intermediates into stable derivatives. These strategies have provided unforeseen upgrading pathways, products and process solutions. In this Review, we outline the molecular driving forces that shape the deconstruction landscape and describe the strategies for chemical functionalization. We then offer an outlook on further developments and the potential of these strategies to sustainably produce renewable-platform chemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA