Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
IEEE Open J Eng Med Biol ; 5: 133-139, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487093

RESUMO

Goal: We present a new framework for in vivo image guidance evaluation and provide a case study on robotic partial nephrectomy. Methods: This framework (called the "bystander protocol") involves two surgeons, one who solely performs the therapeutic process without image guidance, and another who solely periodically collects data to evaluate image guidance. This isolates the evaluation from the therapy, so that in-development image guidance systems can be tested without risk of negatively impacting the standard of care. We provide a case study applying this protocol in clinical cases during robotic partial nephrectomy surgery. Results: The bystander protocol was performed successfully in 6 patient cases. We find average lesion centroid localization error with our IGS system to be 6.5 mm in vivo compared to our prior result of 3.0 mm in phantoms. Conclusions: The bystander protocol is a safe, effective method for testing in-development image guidance systems in human subjects.

2.
World J Urol ; 40(3): 671-677, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34132897

RESUMO

Image-guidance during partial nephrectomy enables navigation within the operative field alongside a 3-dimensional roadmap of renal anatomy generated from patient-specific imaging. Once a process is performed by the human mind, the technology will allow standardization of the task for the benefit of all patients undergoing robot-assisted partial nephrectomy. Any surgeon will be able to visualize the kidney and key subsurface landmarks in real-time within a 3-dimensional simulation, with the goals of improving operative efficiency, decreasing surgical complications, and improving oncologic outcomes. For similar purposes, image-guidance has already been adopted as a standard of care in other surgical fields; we are now at the brink of this in urology. This review summarizes touch-based approaches to image-guidance during partial nephrectomy, as the technology begins to enter in vivo human evaluation. The processes of segmentation, localization, registration, and re-registration are all described with seamless integration into the da Vinci surgical system; this will facilitate clinical adoption sooner.


Assuntos
Neoplasias Renais , Procedimentos Cirúrgicos Robóticos , Robótica , Humanos , Rim/cirurgia , Neoplasias Renais/cirurgia , Nefrectomia/métodos , Tato
3.
J Endourol ; 35(3): 362-368, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33040602

RESUMO

Aim: Image-guided surgery (IGS) allows for accurate, real-time localization of subsurface critical structures during surgery. No prior IGS systems have described a feasible method of intraoperative reregistration after manipulation of the kidney during robotic partial nephrectomy (PN). We present a method for seamless reregistration during IGS and evaluate accuracy before and after tumor resection in two validated kidney phantoms. Materials and Methods: We performed robotic PN on two validated kidney phantoms-one with an endophytic tumor and one with an exophytic tumor-with our IGS system utilizing the da Vinci Xi robot. Intraoperatively, the kidney phantoms' surfaces were digitized with the da Vinci robotic manipulator via a touch-based method and registered to a three-dimensional segmented model created from cross-sectional CT imaging of the phantoms. Fiducial points were marked with a surgical marking pen and identified after the initial registration using the robotic manipulator. Segmented images were displayed via picture-in-picture in the surgeon console as tumor resection was performed. After resection, reregistration was performed by reidentifying the fiducial points. The accuracy of the initial registration and reregistration was compared. Results: The root mean square (RMS) averages of target registration error (TRE) were 2.53 and 4.88 mm for the endophytic and exophytic phantoms, respectively. IGS enabled resection along preplanned contours. Specifically, the RMS averages of the normal TRE over the entire resection surface were 0.75 and 2.15 mm for the endophytic and exophytic phantoms, respectively. Both tumors were resected with grossly negative margins. Point-based reregistration enabled instantaneous reregistration with minimal impact on RMS TRE compared with the initial registration (from 1.34 to 1.70 mm preresection and from 1.60 to 2.10 mm postresection). Conclusions: We present a novel and accurate registration and reregistration framework for use during IGS for PN with the da Vinci Xi surgical system. The technology is easily integrated into the surgical workflow and does not require additional hardware.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Cirurgia Assistida por Computador , Estudos Transversais , Humanos , Nefrectomia , Imagens de Fantasmas , Tato
4.
Int J Med Robot ; 16(6): 1-10, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32808429

RESUMO

BACKGROUND: Current laparoscopic surgical robots are teleoperated, which requires high fidelity differential motions but does not require absolute accuracy. Emerging applications, including image guidance and automation, require absolute accuracy. The absolute accuracy of the da Vinci Xi robot has not yet been characterized or compared to the Si system, which is now being phased out. This study compares the accuracy of the two. METHODS: We measure robot tip positions and encoder values assessing accuracy with and without robot calibration. RESULTS: The Si is accurate if the setup joints are not moved but loses accuracy otherwise. The Xi is always accurate. CONCLUSION: The Xi can achieve submillimetric average error. Calibration improves accuracy, but excellent baseline accuracy of the Xi means that calibration may not be needed for some applications. Importantly, the external tracking systems needed to account for setup joint error in the Si are no longer required with the Xi.


Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Humanos , Resultado do Tratamento
5.
J Biomech Eng ; 142(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31891373

RESUMO

Though mechanical circulatory support (MCS) devices, such as ventricular assist devices and total artificial hearts (TAH), provide heart failure patients with bridges to heart transplantation or are alternatives to transplantation, device performance, and corresponding control strategies are often difficult to evaluate. Difficulties arise due to the complex interaction of multiple domains-i.e., biological, hydraulic, hemodynamics, electromechanical, system dynamics, and controls. In an attempt to organize, integrate and clarify these interactions, a technique often used in hydraulic pump design and robotics, called "bond graph modeling," is applied to describe the performance and functionality of MCS devices and the interaction between the cardiovascular (CV) system and the MCS device. This technical brief demonstrates the advantages of this tool in formulating a model for the systemic circulation interacting with the left side of a TAH, adopting the fundamental structure of either a hydraulic mechanism (i.e., AbioCor/Carmat) or a pneumatic mechanism (i.e., SynCardia), combined with a systemic circulation loop. The model captures the dynamics of the membrane, the hydraulic source or pneumatic source, and the systemic circulation. This multidisciplinary cross-pollination of an analytical tool from the field of dynamic systems may provide important insight to further aid and improve the design and control of future MCS systems.


Assuntos
Coração Artificial , Sistema Cardiovascular , Insuficiência Cardíaca , Transplante de Coração , Coração Auxiliar , Humanos
6.
IEEE Trans Med Robot Bionics ; 2(2): 196-205, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-36176345

RESUMO

Partial nephrectomy involves removing a tumor while sparing surrounding healthy kidney tissue. Compared to total kidney removal, partial nephrectomy improves outcomes for patients but is underutilized because it is challenging to accomplish minimally invasively, requiring accurate spatial awareness of unseen subsurface anatomy. Image guidance can enhance spatial awareness by displaying a 3D model of anatomical relationships derived from medical imaging information. It has been qualitatively suggested that the da Vinci robot is well suited to facilitate image guidance through touch-based registration. In this paper we validate and advance this concept toward real-world use in several important ways. First, we contribute the first quantitative accuracy evaluation of touch-based registration with the da Vinci. Next, we demonstrate real-time touch-based registration and display of medical images for the first time. Lastly, we perform the first experiments validating use of touch-based image guidance to improve a surgeon's ability to localize subsurface anatomical features in a geometrically realistic phantom.

7.
Artif Organs ; 44(6): E226-E237, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31876310

RESUMO

Mechanical circulatory support (MCS) devices continue to be hampered by thrombotic adverse events (AEs), a consequence of device-imparted supraphysiologic shear stresses, leading to shear-mediated platelet activation (SMPA). In advancing MCS devices from design to clinical use, in vitro circulatory loops containing the device under development and testing are utilized as a means of assessing device thrombogenicity. Physical characteristics of these test circulatory loops may also contribute to inadvertent platelet activation through imparted shear stress, adding inadvertent error in evaluating MCS device thrombogenicity. While investigators normally control for the effect of a loop, inadvertent addition of what are considered innocuous connectors may impact test results. Here, we tested the effect of common, additive components of in vitro circulatory test loops, that is, connectors and loop geometry, as to their additive contribution to shear stress via both in silico and in vitro models. A series of test circulatory loops containing a ventricular assist device (VAD) with differing constituent components, were established in silico including: loops with 0~5 Luer connectors, a loop with a T-connector creating 90° angulation, and a loop with 90° angulation. Computational fluid dynamics (CFD) simulations were performed using a k - ω shear stress transport turbulence model to platelet activation index (PAI) based on a power law model. VAD-operated loops replicating in silico designs were assembled in vitro and gel-filtered human platelets were recirculated within (1 hour) and SMPA was determined. CFD simulations demonstrated high shear being introduced at non-smooth regions such as edge-connector boundaries, tubing, and at Luer holes. Noticeable peaks' shifts of scalar shear stress (sss) distributions toward high shear-region existed with increasing loop complexity. Platelet activation also increased with increasing shear exposure time, being statistically higher when platelets were exposed to connector-employed loop designs. The extent of platelet activation in vitro could be successfully predicted by CFD simulations. Loops employing additional components (non-physiological flow pattern connectors) resulted in higher PAI. Loops with more components (5-connector loop and 90° T-connector) showed 63% and 128% higher platelet activation levels, respectively, versus those with fewer (0-connector (P = .023) and a 90° heat-bend loop (P = .0041). Our results underscore the importance of careful consideration of all component elements, and suggest the need for standardization in designing in vitro circulatory loops for MCS device evaluation to avoid inadvertent additive SMPA during device evaluation, confounding overall results. Specifically, we caution on the use and inadvertent introduction of additional connectors, ports, and other shear-generating elements which introduce artifact, clouding primary device evaluation via introduction of additive SMPA.


Assuntos
Desenho de Equipamento , Coração Auxiliar/efeitos adversos , Hemodinâmica/fisiologia , Trombose/prevenção & controle , Adulto , Artefatos , Plaquetas/fisiologia , Simulação por Computador , Voluntários Saudáveis , Humanos , Ativação Plaquetária/fisiologia , Resistência ao Cisalhamento , Estresse Mecânico , Trombose/etiologia
8.
Soft Robot ; 6(5): 671-684, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31241408

RESUMO

While soft material actuators can undergo large deformations to execute very complex motions, what is critically lacking in soft material robotic systems is the ability to collect high-resolution shape information for sophisticated functions such as environmental mapping, collision detection, and full state feedback control. This work explores the potential of a nearly commercial fiber optic shape sensor (FOSS) and presents the first demonstrations of a monolithic, multicore FOSS integrated into the structure of a fiber-reinforced soft actuator. In this pilot study, we report an open loop sensorized soft actuator capable of submillimeter position feedback that can detect the soft actuator's shape, environmental shapes, collision locations, and material stiffness properties.

9.
Int J Comput Assist Radiol Surg ; 14(1): 105-115, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30173334

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is one of the deadliest forms of stroke in the USA. Conventional surgical techniques such as craniotomy or stereotactic aspiration disrupt a large volume of healthy brain tissue in their attempts to reach the surgical site. Consequently, the surviving patients suffer from debilitating complications. METHODS: We fabricated a novel MR-conditional steerable needle robot for ICH treatment. The robot system is powered by a custom-designed high power and low-cost pneumatic motor. We tested the robot's targeting accuracy and MR-conditionality performance, and performed phantom evacuation experiment under MR image guidance. RESULTS: Experiments demonstrate that the robotic hardware is MR-conditional; the robot has the targeting accuracy of 1.26 ± 1.22 mm in bench-top tests. With real-time MRI guidance, the robot successfully reached the desired target and evacuated an 11.3 ml phantom hematoma in 9 min. CONCLUSION: MRI-guided steerable needle robotic system is a potentially feasible approach for ICH treatment by providing accurate needle guidance and intraoperative surgical outcome evaluation.


Assuntos
Encéfalo/cirurgia , Hemorragia Cerebral/cirurgia , Imageamento por Ressonância Magnética/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Encéfalo/diagnóstico por imagem , Hemorragia Cerebral/diagnóstico por imagem , Desenho de Equipamento , Humanos , Imageamento Tridimensional/métodos , Agulhas , Imagens de Fantasmas
10.
Oper Neurosurg (Hagerstown) ; 13(1): 15-22, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28580377

RESUMO

BACKGROUND: The recent development of MRI-guided laser-induced thermal therapy (LITT) offers a minimally invasive alternative to craniotomies performed for tumor resection or for amygdalohippocampectomy to control seizure disorders. Current LITT therapies rely on linear stereotactic trajectories that mandate twist-drill entry into the skull and potentially long approaches traversing healthy brain. The use of robotically-driven, telescoping, curved needles has the potential to reduce procedure invasiveness by tailoring trajectories to the curved shape of the ablated structure and by enabling access through natural orifices. OBJECTIVE: To investigate the feasibility of using a concentric tube robot to access the hippocampus through the foramen ovale to deliver thermal therapy and thereby provide a percutaneous treatment for epilepsy without drilling the skull. METHODS: The skull and both hippocampi were segmented from dual CT/MR image volumes for 10 patients. For each of the 20 hippocampi, a concentric tube robot was designed and optimized to traverse a trajectory from the foramen ovale to and through the hippocampus from head to tail. RESULTS: Across all 20 cases, the mean distances (error) between hippocampus medial axis and backbone of the needle were 0.55 mm, 1.11 mm, and 1.66 mm for best, mean, and worst case, respectively. CONCLUSION: These curvilinear trajectories would provide accurate transforamenal delivery of an ablation probe to typical hippocampus volumes. This strategy has the potential to both decrease the invasiveness of the procedure and increase the completeness of hippocampal ablation.


Assuntos
Hipocampo/cirurgia , Terapia a Laser/métodos , Agulhas , Procedimentos Cirúrgicos Robóticos/métodos , Terapia Combinada , Simulação por Computador , Epilepsia do Lobo Temporal/cirurgia , Desenho de Equipamento , Hipocampo/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Terapia a Laser/instrumentação , Imagem por Ressonância Magnética Intervencionista , Procedimentos Cirúrgicos Robóticos/instrumentação , Base do Crânio/diagnóstico por imagem , Base do Crânio/cirurgia , Tomografia Computadorizada por Raios X
11.
IEEE ASME Trans Mechatron ; 22(6): 2780-2789, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31105420

RESUMO

Magnetic Resonance (MR) guided interventional robots have recently been developed for a variety of surgeries, such as biopsy, ablation, and brachytherapy. The actuators and encoders that power and track such robots must be MR-conditional. In this paper, we propose an MR-conditional pneumatic motor with an integrated and custom-built fiber-optical encoder that provides powerful and accurate actuation. The motor is coupled with a modular plastic gearbox that provides a variety of gear ratio options so that the motor can be adapted to application requirements. With a 100:1 gear reduction at 0.55 MPa, the motor achieves 460 mNm stall torque and 370 rpm no-load speed, which leads to the peak output power of 6W. The motor has the bandwidth of approximately 1.1 Hz and 3.5 Hz when connected to 8 m and 0.2 m air hoses, respectively. The motor was tested in a 3T MRI scanner. No image artifact was observed and maximum signal to noise ratio (SNR) variation was less than 5%. Different from most of the existing MR-conditional pneumatic actuators, the proposed motor shape is more like the traditional electric motors, which offers more flexibility in the MR-conditional robot design.

12.
IEEE Trans Robot ; 32(1): 138-149, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31105476

RESUMO

This paper reports the design, modeling, and control of an MR-compatible actuation unit comprising pneumatic stepper mechanisms. One helix-shaped bellows and one toroid-shaped bellows were designed to actuate in pure rotation and pure translation, respectively. The actuation unit is a two degree- of-freedom needle driver that translates and rotates the base of one tube of a steerable needle like a concentric tube robot. For safety, mechanical stops limit needle motion to maximum unplanned step sizes of 0.5 mm and 0.5 degrees. Additively manufactured by selective laser sintering, the flexible fluidic actuating (FFA) mechanism achieves two degree-of-freedom motion as a monolithic, compact, and hermetically-sealed device. A second novel contribution is sub-step control for precise translations and rotations less than full step increments; steady- state errors of 0.013 mm and 0.018 degrees were achieved. The linear FFA produced peak forces of 33 N and -26.5 N for needle insertion and retraction, respectively. The rotary FFA produced bidirectional peak torques of 68 N-mm. With the FFA's in full motion in a 3T scanner, no loss in signal-to-noise ratio of MR images observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA