Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(5): e1012176, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709846

RESUMO

Magnaporthe AVRs and ToxB-like (MAX) effectors constitute a family of secreted virulence proteins in the fungus Pyricularia oryzae (syn. Magnaporthe oryzae), which causes blast disease on numerous cereals and grasses. In spite of high sequence divergence, MAX effectors share a common fold characterized by a ß-sandwich core stabilized by a conserved disulfide bond. In this study, we investigated the structural landscape and diversity within the MAX effector repertoire of P. oryzae. Combining experimental protein structure determination and in silico structure modeling we validated the presence of the conserved MAX effector core domain in 77 out of 94 groups of orthologs (OG) identified in a previous population genomic study. Four novel MAX effector structures determined by NMR were in remarkably good agreement with AlphaFold2 (AF2) predictions. Based on the comparison of the AF2-generated 3D models we propose a classification of the MAX effectors superfamily in 20 structural groups that vary in the canonical MAX fold, disulfide bond patterns, and additional secondary structures in N- and C-terminal extensions. About one-third of the MAX family members remain singletons, without strong structural relationship to other MAX effectors. Analysis of the surface properties of the AF2 MAX models also highlights the high variability within the MAX family at the structural level, potentially reflecting the wide diversity of their virulence functions and host targets.


Assuntos
Ascomicetos , Proteínas Fúngicas , Doenças das Plantas , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Ascomicetos/metabolismo , Doenças das Plantas/microbiologia , Modelos Moleculares , Conformação Proteica , Virulência , Fatores de Virulência/genética , Fatores de Virulência/química , Fatores de Virulência/metabolismo , Sequência de Aminoácidos
2.
Biomol NMR Assign ; 18(1): 65-70, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38526839

RESUMO

NCYM is a cis-antisense gene of MYCN oncogene and encodes an oncogenic protein that stabilizes MYCN via inhibition of GSK3b. High NCYM expression levels are associated with poor clinical outcomes in human neuroblastomas, and NCYM overexpression promotes distant metastasis in animal models of neuroblastoma. Using vacuum-ultraviolet circular dichroism and small-angle X-ray scattering, we previously showed that NCYM has high flexibility with partially folded structures; however, further structural characterization is required for the design of anti-cancer agents targeting NCYM. Here we report the 1H, 15N and 13C nuclear magnetic resonance assignments of NCYM. Secondary structure prediction using Secondary Chemical Shifts and TALOS-N analysis demonstrates that the structure of NCYM is essentially disordered, even though residues in the central region of the peptide clearly present a propensity to adopt a dynamic helical structure. This preliminary study provides foundations for further analysis of interaction between NCYM and potential partners.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Humanos , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Isótopos de Nitrogênio
3.
Molecules ; 28(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37630320

RESUMO

Does a similar 3D structure mean a similar folding pathway? This question is particularly meaningful when it concerns proteins sharing a similar 3D structure, but low sequence identity or homology. MAX effectors secreted by the phytopathogenic fungus Magnaporthe oryzae present such characteristics. They share a common 3D structure, a ß-sandwich with the same topology for all the family members, but an extremely low sequence identity/homology. In a previous study, we have investigated the folding of two MAX effectors, AVR-Pia and AVR-Pib, using High-Hydrostatic-Pressure NMR and found that they display a similar folding pathway, with a common folding intermediate. In the present work, we used a similar strategy to investigate the folding conformational landscape of another MAX effector, MAX60, and found a very different folding intermediate. Our analysis strongly supports that the presence of a C-terminal α-helical extension in the 3D structure of MAX60 could be responsible for its different folding pathway.


Assuntos
Ascomicetos , Transporte Biológico , Pressão Hidrostática , Dobramento de Proteína , Proteínas Fúngicas
4.
Biomol NMR Assign ; 17(2): 217-221, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37452919

RESUMO

Human babesiosis is a vector-borne zoonotic infection caused mostly by the Apicomplexan parasite Babesia microti, distributed worldwide. The infection can result in severe symptoms such as hemolytic anemia, especially in immunodeficient patients. Also, asymptomatic patients continue transmission as unscreened blood donors, and represent a risk for Public Health. Early host-parasite interactions are mediated by BmSA1, the major surface antigen of Babesia microti, crucial for invasion and immune escape. Hence, a structural and functional characterization of the BmSA1 protein constitutes a first strategic milestone toward the development of innovative tools to control infection. Knowledge of the 3D structure of such an important antigen is crucial for the development of vaccines or new diagnostic tests. Here, we report the 1H, 15N and 13C NMR resonance assignment of ∆∆BmSA1, a truncated recombinant version of BmSA1 without the N-terminal signal peptide and the hydrophobic C-terminal GPI-anchor. Secondary structure prediction using CSI.3 and TALOS-N demonstrates a high content of alpha-helical structure. This preliminary study provides foundations for further structural characterization of BMSA1.


Assuntos
Babesia microti , Babesiose , Humanos , Antígenos de Protozoários , Antígenos de Superfície , Ressonância Magnética Nuclear Biomolecular , Babesiose/diagnóstico , Babesiose/parasitologia
5.
Microbiol Spectr ; 11(3): e0106623, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036353

RESUMO

Host metabolism reprogramming is a key feature of Mycobacterium tuberculosis (Mtb) infection that enables the survival of this pathogen within phagocytic cells and modulates the immune response facilitating the spread of the tuberculosis disease. Here, we demonstrate that a previously uncharacterized secreted protein from Mtb, Rv1813c, manipulates the host metabolism by targeting mitochondria. When expressed in eukaryotic cells, the protein is delivered to the mitochondrial intermembrane space and promotes the enhancement of host ATP production by boosting the oxidative phosphorylation metabolic pathway. Furthermore, the release of cytochrome c from mitochondria, an early apoptotic event in response to short-term oxidative stress, is delayed in Rv1813c-expressing cells. This study reveals a novel class of mitochondria targeting effectors from Mtb that might participate in host cell metabolic reprogramming and apoptosis control during Mtb infections. IMPORTANCE In this article, using a combination of techniques (bioinformatics, structural biology, and cell biology), we identified and characterized a new class of effectors present only in intracellular mycobacteria. These proteins specifically target host cell mitochondria when ectopically expressed in cells. We showed that one member of this family (Rv1813c) affects mitochondria metabolism in a way that might twist the immune response. This effector also inhibits the cytochrome c exit from mitochondria, suggesting that it might alter normal host cell apoptotic capacities, one of the first defenses of immune cells against Mtb infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Citocromos c/metabolismo , Tuberculose/microbiologia , Metabolismo Energético , Mitocôndrias/metabolismo , Interações Hospedeiro-Patógeno
6.
Commun Biol ; 5(1): 800, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945264

RESUMO

Multidomain kinases use many ways to integrate and process diverse stimuli. Here, we investigated the mechanism by which the protein tyrosine kinase 2-beta (PYK2) functions as a sensor and effector of cellular calcium influx. We show that the linker between the PYK2 kinase and FAT domains (KFL) encompasses an unusual calmodulin (CaM) binding element. PYK2 KFL is disordered and engages CaM through an ensemble of transient binding events. Calcium increases the association by promoting structural changes in CaM that expose auxiliary interaction opportunities. KFL also forms fuzzy dimers, and dimerization is enhanced by CaM binding. As a monomer, however, KFL associates with the PYK2 FERM-kinase fragment. Thus, we identify a mechanism whereby calcium influx can promote PYK2 self-association, and hence kinase-activating trans-autophosphorylation. Collectively, our findings describe a flexible protein module that expands the paradigms for CaM binding and self-association, and their use for controlling kinase activity.


Assuntos
Cálcio , Calmodulina , Cálcio/metabolismo , Calmodulina/metabolismo , Dimerização , Quinase 2 de Adesão Focal/química , Quinase 2 de Adesão Focal/metabolismo , Fosforilação
7.
Biomol NMR Assign ; 16(2): 305-309, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35657473

RESUMO

Effectors are small and very diverse proteins secreted by fungi and translocated in plant cells during infection. Among them, MAX effectors (for Magnaporthe Avrs and ToxB) were identified as a family of effectors that share an identical fold topology despite having highly divergent sequences. They are mostly secreted by ascomycetes from the Magnaporthe genus, a fungus that causes the rice blast, a plant disease leading to huge crop losses. As rice is the first source of calories in many countries, especially in Asia and Africa, this constitutes a threat for world food security. Hence, a better understanding of these effectors, including structural and functional characterization, constitutes a strategic milestone in the fight against phytopathogen fungi and may give clues for the development of resistant varieties of rice. We report here the near complete 1H, 15 N and 13C NMR resonance assignment of three new putative MAX effectors (MAX47, MAX60 and MAX67). Secondary structure determination using TALOS-N and CSI.3 demonstrates a high content of ß-strands in all the three proteins, in agreement with the canonic ß-sandwich structure of MAX effectors. This preliminary study provides foundations for further structural characterization, that will help in turn to improve sequence predictions of other MAX effectors through data mining.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Ascomicetos/metabolismo , Proteínas Fúngicas/química , Magnaporthe/metabolismo , Ressonância Magnética Nuclear Biomolecular , Oryza/metabolismo , Oryza/microbiologia
8.
Int J Mol Sci ; 23(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35628267

RESUMO

Despite advances in experimental and computational methods, the mechanisms by which an unstructured polypeptide chain regains its unique three-dimensional structure remains one of the main puzzling questions in biology. Single-molecule techniques, ultra-fast perturbation and detection approaches and improvement in all-atom and coarse-grained simulation methods have greatly deepened our understanding of protein folding and the effects of environmental factors on folding landscape. However, a major challenge remains the detailed characterization of the protein folding landscape. Here, we used high hydrostatic pressure 2D NMR spectroscopy to obtain high-resolution experimental structural information in a site-specific manner across the polypeptide sequence and along the folding reaction coordinate. We used this residue-specific information to constrain Cyana3 calculations, in order to obtain a topological description of the entire folding landscape. This approach was used to describe the conformers populating the folding landscape of two small globular proteins, AVR-Pia and AVR-Pib, that belong to the structurally conserved but sequence-unrelated MAX effectors superfamily. Comparing the two folding landscapes, we found that, in spite of their divergent sequences, the folding pathway of these two proteins involves a similar, inescapable, folding intermediate, even if, statistically, the routes used are different.


Assuntos
Ascomicetos , Dobramento de Proteína , Espectroscopia de Ressonância Magnética , Proteínas/química
9.
Biology (Basel) ; 10(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34356511

RESUMO

Multidimensional NMR intrinsically provides multiple probes that can be used for deciphering the folding pathways of proteins: NH amide and CαHα groups are strategically located on the backbone of the protein, while CH3 groups, on the side-chain of methylated residues, are involved in important stabilizing interactions in the hydrophobic core. Combined with high hydrostatic pressure, these observables provide a powerful tool to explore the conformational landscapes of proteins. In the present study, we made a comparative assessment of the NH, CαHα, and CH3 groups for analyzing the unfolding pathway of ∆+PHS Staphylococcal Nuclease. These probes yield a similar description of the folding pathway, with virtually identical thermodynamic parameters for the unfolding reaction, despite some notable differences. Thus, if partial unfolding begins at identical pressure for these observables (especially in the case of backbone probes) and concerns similar regions of the molecule, the residues involved in contact losses are not necessarily the same. In addition, an unexpected slight shift toward higher pressure was observed in the sequence of the scenario of unfolding with CαHα when compared to amide groups.

10.
Int J Mol Sci ; 22(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808390

RESUMO

When combined with NMR spectroscopy, high hydrostatic pressure is an alternative perturbation method used to destabilize globular proteins that has proven to be particularly well suited for exploring the unfolding energy landscape of small single-domain proteins. To date, investigations of the unfolding landscape of all-ß or mixed-α/ß protein scaffolds are well documented, whereas such data are lacking for all-α protein domains. Here we report the NMR study of the unfolding pathways of GIPC1-GH2, a small α-helical bundle domain made of four antiparallel α-helices. High-pressure perturbation was combined with NMR spectroscopy to unravel the unfolding landscape at three different temperatures. The results were compared to those obtained from classical chemical denaturation. Whatever the perturbation used, the loss of secondary and tertiary contacts within the protein scaffold is almost simultaneous. The unfolding transition appeared very cooperative when using high pressure at high temperature, as was the case for chemical denaturation, whereas it was found more progressive at low temperature, suggesting the existence of a complex folding pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Desdobramento de Proteína/efeitos dos fármacos , Humanos , Cinética , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Conformação Proteica em alfa-Hélice/fisiologia , Desnaturação Proteica , Domínios Proteicos , Temperatura , Termodinâmica
11.
Molecules ; 25(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256081

RESUMO

High-hydrostatic pressure is an alternative perturbation method that can be used to destabilize globular proteins. Generally perfectly reversible, pressure exerts local effects on regions or domains of a protein containing internal voids, contrary to heat or chemical denaturant that destabilize protein structures uniformly. When combined with NMR spectroscopy, high pressure (HP) allows one to monitor at a residue-level resolution the structural transitions occurring upon unfolding and to determine the kinetic properties of the process. The use of HP-NMR has long been hampered by technical difficulties. Owing to the recent development of commercially available high-pressure sample cells, HP-NMR experiments can now be routinely performed. This review summarizes recent advances of HP-NMR techniques for the characterization at a quasi-atomic resolution of the protein folding energy landscape.


Assuntos
Espectroscopia de Ressonância Magnética , Modelos Moleculares , Pressão , Conformação Proteica , Dobramento de Proteína , Proteínas/química , Pressão Hidrostática , Cinética , Espectroscopia de Ressonância Magnética/métodos , Modelos Teóricos , Desdobramento de Proteína , Relação Estrutura-Atividade , Termodinâmica
12.
Sci Rep ; 9(1): 18084, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792250

RESUMO

Rust fungi are plant pathogens that secrete an arsenal of effector proteins interfering with plant functions and promoting parasitic infection. Effectors are often species-specific, evolve rapidly, and display low sequence similarities with known proteins. How rust fungal effectors function in host cells remains elusive, and biochemical and structural approaches have been scarcely used to tackle this question. In this study, we produced recombinant proteins of eleven candidate effectors of the leaf rust fungus Melampsora larici-populina in Escherichia coli. We successfully purified and solved the three-dimensional structure of two proteins, MLP124266 and MLP124017, using NMR spectroscopy. Although both MLP124266 and MLP124017 show no sequence similarity with known proteins, they exhibit structural similarities to knottins, which are disulfide-rich small proteins characterized by intricate disulfide bridges, and to nuclear transport factor 2-like proteins, which are molecular containers involved in a wide range of functions, respectively. Interestingly, such structural folds have not been reported so far in pathogen effectors, indicating that MLP124266 and MLP124017 may bear novel functions related to pathogenicity. Our findings show that sequence-unrelated effectors can adopt folds similar to known proteins, and encourage the use of biochemical and structural approaches to functionally characterize effector candidates.


Assuntos
Basidiomycota/química , Cistina/química , Proteínas Fúngicas/química , Proteínas de Transporte Nucleocitoplasmático/química , Basidiomycota/genética , Cistina/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Proteínas de Transporte Nucleocitoplasmático/genética , Doenças das Plantas/microbiologia , Conformação Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
13.
Mol Microbiol ; 112(6): 1847-1862, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31562654

RESUMO

Mycobacterium tuberculosis (Mtb) is able to persist in the body through months of multi-drug therapy. Mycobacteria possess a wide range of regulatory proteins, including the protein kinase B (PknB) which controls peptidoglycan biosynthesis during growth. Here, we observed that depletion of PknB resulted in specific transcriptional changes that are likely caused by reduced phosphorylation of the H-NS-like regulator Lsr2 at threonine 112. The activity of PknB towards this phosphosite was confirmed with purified proteins, and this site was required for adaptation of Mtb to hypoxic conditions, and growth on solid media. Like H-NS, Lsr2 binds DNA in sequence-dependent and non-specific modes. PknB phosphorylation of Lsr2 reduced DNA binding, measured by fluorescence anisotropy and electrophoretic mobility shift assays, and our NMR structure of phosphomimetic T112D Lsr2 suggests that this may be due to increased dynamics of the DNA-binding domain. Conversely, the phosphoablative T112A Lsr2 had increased binding to certain DNA sites in ChIP-sequencing, and Mtb containing this variant showed transcriptional changes that correspond with the change in DNA binding. In summary, PknB controls Mtb growth and adaptations to the changing host environment by phosphorylating the global transcriptional regulator Lsr2.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Bactérias/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Proteínas de Ligação a DNA/fisiologia , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Regulação Bacteriana da Expressão Gênica/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/fisiologia , Treonina/metabolismo , Fatores de Transcrição/metabolismo
14.
Biomolecules ; 9(8)2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357538

RESUMO

Dengue fever is a mosquito-borne endemic disease in tropical and subtropical regions, causing a significant public health problem in Southeast Asia. Domain III (ED3) of the viral envelope protein contains the two dominant putative epitopes and part of the heparin sulfate receptor binding region that drives the dengue virus (DENV)'s fusion with the host cell. Here, we used high-hydrostatic-pressure nuclear magnetic resonance (HHP-NMR) to obtain residue-specific information on the folding process of domain III from serotype 4 dengue virus (DEN4-ED3), which adopts the classical three-dimensional (3D) ß-sandwich structure known as the Ig-like fold. Interestingly, the folding pathway of DEN4-ED3 shares similarities with that of the Titin I27 module, which also adopts an Ig-like fold, but is functionally unrelated to ED3. For both proteins, the unfolding process starts by the disruption of the N- and C-terminal strands on one edge of the ß-sandwich, yielding a folding intermediate stable over a substantial pressure range (from 600 to 1000 bar). In contrast to this similarity, pressure-jump kinetics indicated that the folding transition state is considerably more hydrated in DEN4-ED3 than in Titin I27.


Assuntos
Vírus da Dengue/metabolismo , Proteínas do Envelope Viral/química , Pressão Hidrostática , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína
15.
Structure ; 27(8): 1270-1285.e6, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31178221

RESUMO

In its unliganded form, the retinoic acid receptor (RAR) in heterodimer with the retinoid X receptor (RXR) exerts a strong repressive activity facilitated by the recruitment of transcriptional corepressors in the promoter region of target genes. By integrating complementary structural, biophysical, and computational information, we demonstrate that intrinsic disorder is a required feature for the precise regulation of RAR activity. We show that structural dynamics of RAR and RXR H12 regions is an essential mechanism for RAR regulation. Unexpectedly we found that, while mainly disordered, the corepressor N-CoR presents evolutionary conserved structured regions involved in transient intramolecular contacts. In the presence of RXR/RAR, N-CoR exploits its multivalency to form a cooperative multisite complex that displays equilibrium between different conformational states that can be tuned by cognate ligands and receptor mutations. This equilibrium is key to preserving the repressive basal state while allowing the conversion to a transcriptionally active form.


Assuntos
Correpressor 1 de Receptor Nuclear/genética , Receptor alfa de Ácido Retinoico/química , Receptor alfa de Ácido Retinoico/metabolismo , Receptores X de Retinoides/química , Receptores X de Retinoides/metabolismo , Animais , Células COS , Chlorocebus aethiops , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Correpressor 1 de Receptor Nuclear/química , Correpressor 1 de Receptor Nuclear/metabolismo , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína
16.
Sci Rep ; 9(1): 1840, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755682

RESUMO

Chemically-induced dimerization (CID) systems are essential tools to interrogate and control biological systems. AcVHH is a single domain antibody homo-dimerizing upon caffeine binding. AcVHH has a strong potential for clinical applications through caffeine-mediated in vivo control of therapeutic gene networks. Here we provide the structural basis for caffeine-induced homo-dimerization of acVHH.


Assuntos
Anticorpos/química , Cafeína/química , Dimerização , Humanos , Domínios de Imunoglobulina , Modelos Químicos , Conformação Proteica , Relação Estrutura-Atividade
17.
Cell Rep ; 25(1): 57-67.e5, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30282038

RESUMO

Tuberculosis claims >1 million lives annually, and its causative agent Mycobacterium tuberculosis is a highly successful pathogen. Protein kinase B (PknB) is reported to be critical for mycobacterial growth. Here, we demonstrate that PknB-depleted M. tuberculosis can replicate normally and can synthesize peptidoglycan in an osmoprotective medium. Comparative phosphoproteomics of PknB-producing and PknB-depleted mycobacteria identify CwlM, an essential regulator of peptidoglycan synthesis, as a major PknB substrate. Our complementation studies of a cwlM mutant of M. tuberculosis support CwlM phosphorylation as a likely molecular basis for PknB being essential for mycobacterial growth. We demonstrate that growing mycobacteria produce two forms of CwlM: a non-phosphorylated membrane-associated form and a PknB-phosphorylated cytoplasmic form. Furthermore, we show that the partner proteins for the phosphorylated and non-phosphorylated forms of CwlM are FhaA, a fork head-associated domain protein, and MurJ, a proposed lipid II flippase, respectively. From our results, we propose a model in which CwlM potentially regulates both the biosynthesis of peptidoglycan precursors and their transport across the cytoplasmic membrane.


Assuntos
Mycobacterium tuberculosis/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sequência de Aminoácidos , Parede Celular/enzimologia , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Fosforilação , Proteínas Proto-Oncogênicas c-akt/deficiência
18.
Biophys J ; 115(2): 341-352, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30021109

RESUMO

A complete description of the pathways and mechanisms of protein folding requires a detailed structural and energetic characterization of the folding energy landscape. Simulations, when corroborated by experimental data yielding global information on the folding process, can provide this level of insight. Molecular dynamics (MD) has often been combined with force spectroscopy experiments to decipher the unfolding mechanism of titin immunoglobulin-like single or multidomain, the giant multimodular protein from sarcomeres, yielding information on the sequential events during titin unfolding under stretching. Here, we used high-pressure NMR to monitor the unfolding of titin I27 Ig-like single domain and tandem. Because this method brings residue-specific information on the folding process, it can provide quasiatomic details on this process without the help of MD simulations. Globally, the results of our high-pressure analysis are in agreement with previous results obtained by the combination of experimental measurements and MD simulation and/or protein engineering, although the intermediate folding state caused by the early detachment of the AB ß-sheet, often reported in previous works based on MD or force spectroscopy, cannot be detected. On the other hand, the A'G parallel ß-sheet of the ß-sandwich has been confirmed as the Achilles heel of the three-dimensional scaffold: its disruption yields complete unfolding with very similar characteristics (free energy, unfolding volume, kinetics rate constants) for the two constructs.


Assuntos
Conectina/química , Ressonância Magnética Nuclear Biomolecular , Pressão , Desdobramento de Proteína , Cinética , Simulação de Dinâmica Molecular , Domínios Proteicos
19.
J Nucl Med ; 59(9): 1423-1429, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29626120

RESUMO

The tumor stroma, which accounts for a large part of the tumor mass, represents an attractive target for the delivery of diagnostic and therapeutic compounds. Here, the focus is notably on a subpopulation of stromal cells, known as cancer-associated fibroblasts, which are present in more than 90% of epithelial carcinomas, including pancreatic, colon, and breast cancer. Cancer-associated fibroblasts feature high expression of fibroblast activation protein (FAP), which is not detectable in adult normal tissue but is associated with a poor prognosis in cancer patients. Methods: We developed an iodinated and a DOTA-coupled radiotracer based on a FAP-specific enzyme inhibitor (FAPI) and evaluated them in vitro using uptake, competition, and efflux studies as well as confocal microscopy of a fluorescence-labeled variant. Furthermore, we performed imaging and biodistribution studies on tumor-bearing animals. Finally, proof of concept was realized by imaging patients with 68Ga-labeled FAPI. Results: Both FAPIs showed high specificity, affinity, and rapid internalization into FAP-expressing cells in vitro and in vivo. Biodistribution studies on tumor-bearing mice and on the first cancer patients demonstrated high intratumoral uptake of the tracer and fast body clearance, resulting in high-contrast images and negligible exposure of healthy tissue to radiation. A comparison with the commonly used radiotracer 18F-FDG in a patient with locally advanced lung adenocarcinoma revealed that the new FAP ligand was clearly superior. Conclusion: Radiolabeled FAPIs allow fast imaging with very high contrast in tumors having a high stromal content and may therefore serve as pantumor agents. Coupling of these molecules to DOTA or other chelators allows labeling not only with 68Ga but also with therapeutic isotopes such as 177Lu or 90Y.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cinética , Ligantes , Camundongos , Metástase Neoplásica , Neoplasias Pancreáticas/patologia , Radioquímica
20.
Structure ; 24(10): 1788-1794, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27568926

RESUMO

Mycobacterium tuberculosis (Mtb) encodes several bacterial effectors impacting the colonization of phagocytes. LppM (Rv2171) is both implicated in phagocytosis and able to efficiently block phagosomal acidification in the macrophage, two key processes contributing to Mtb persistence. We show that LppM is anchored to the mycobacterial cell wall by a C-terminal membrane domain. However, the protein also exists as a truncated protein secreted into the culture medium. The LppM solution structure we solve here displays no similarity with other Mtb lipoproteins also involved in phagosomal maturation (i.e., LprG). In addition, we demonstrate that the protein may be able to bind rare molecular species of phosphatidylinositol mannosides, bacterial compounds known to affect the host immune response. Thus, our data demonstrate a dual localization of LppM and provide a unique perspective on the regulation of protein secretion and localization in Mtb.


Assuntos
Parede Celular/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Mycobacterium tuberculosis/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Meios de Cultura/química , Regulação Bacteriana da Expressão Gênica , Espectrometria de Massas , Modelos Moleculares , Mycobacterium tuberculosis/química , Fagocitose , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA