Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 118: 104461, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33756418

RESUMO

Calcium sulfate (CS) possesses many of the requirements for an ideal bone graft material: it is biodegradable, biocompatible, and osteoconductive. However, its relatively low strength and brittleness are major obstacles to its use as a structural bone implant. Although the strength of CS can be improved by reducing porosity, its brittleness remains a major obstacle towards its use as bone graft. Here we combine two powerful toughening strategies which are found in advanced ceramics and in natural bone: Multi-layered architectures and ductile reinforcements. We first used stress analysis and micromechanics to generate design guidelines that ensure the proper failure sequence and maximize properties. We then fabricated and tested fully dense CS by hydrostatic compression layered with layers of titanium woven mesh. Flexural experiments in hydrated conditions confirmed that the ductility and strength of titanium and the adhesion at the titanium-CS interfaces (controlled by the size of the Ti mesh) are critical factors in the mechanical performance of the composite. Our best design exhibited a toughness 180 times larger than that of plain CS, together with a 46% increase in strength.


Assuntos
Sulfato de Cálcio , Titânio , Cálcio , Teste de Materiais , Próteses e Implantes , Telas Cirúrgicas
2.
Science ; 364(6447): 1260-1263, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31249053

RESUMO

Glass has outstanding optical properties, hardness, and durability, but its applications are limited by its inherent brittleness and poor impact resistance. Lamination and tempering can improve impact response but do not suppress brittleness. We propose a bioinspired laminated glass that duplicates the three-dimensional "brick-and-mortar" arrangement of nacre from mollusk shells, with periodic three-dimensional architectures and interlayers made of a transparent thermoplastic elastomer. This material reproduces the "tablet sliding mechanism," which is key to the toughness of natural nacre but has been largely absent in synthetic nacres. Tablet sliding generates nonlinear deformations over large volumes and significantly improves toughness. This nacre-like glass is also two to three times more impact resistant than laminated glass and tempered glass while maintaining high strength and stiffness.

3.
Bone ; 110: 304-311, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29486368

RESUMO

The most prominent structural components in bone are collagen and mineral. However, bone additionally contains a substantial amount of noncollagenous proteins (most notably of the SIBLING protein family), some of which may act as cohesive/adhesive "binders" for the composite hybrid collagen/mineral scaffolding, whether in the bulk phase of bone, or at its interfaces. One such noncollagenous protein - osteopontin (OPN) - appears to be critical to the deformability and fracture toughness of bone. In the present study, we used a reconstructed synthetic mineral-OPN-mineral interface, and a biogenic (natural tooth dentin) mineral/collagen-OPN-mineral/collagen interface, to measure the fracture toughness of OPN on mineralized substrates. We used this system to test the hypothesis that OPN crosslinking by the enzyme tissue transglutaminase 2 (TG2) that is found in bone enhances interfacial adhesion to increase the fracture toughness of bone. For this, we prepared double-cantilever beam substrates of synthetic pure hydroxyapatite mineral, and of narwhal dentin, and directly apposed them to one another under different intervening OPN/crosslinking conditions, and fracture toughness was tested using a miniaturized loading stage. The work-of-fracture of the OPN interface was measured for different OPN formulations (monomer vs. polymer), crosslinking states, and substrate composition. Noncrosslinked OPN provided negligible adhesion on pure hydroxyapatite, whereas OPN crosslinking (by the chemical crosslinker glutaraldehyde, and TG2 enzyme) provided strong interfacial adhesion for both hydroxyapatite and dentin using monomeric and polymeric OPN. Pre-coating of the substrate beams with monomeric OPN further improved the adhesive performance of the samples, likely by allowing effective binding of this nascent OPN form to mineral/matrix components, with this pre-attachment providing a protein layer for additional crosslinking between the substrates.


Assuntos
Fraturas Ósseas/metabolismo , Osteopontina/metabolismo , Animais , Colágeno/química , Colágeno Tipo I/metabolismo , Durapatita/química , Proteínas de Ligação ao GTP/metabolismo , Osteocalcina/metabolismo , Polímeros/química , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/metabolismo
4.
J Mech Behav Biomed Mater ; 56: 23-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26655459

RESUMO

The remarkable mechanical performance of biological materials such as bone, nacre, and spider silk stems from their staggered microstructure in which stiff and strong reinforcements are elongated in the direction of loading, separated by softer interfaces, and shifted relative to each other. This structure results in useful combinations of modulus, strength and toughness and therefore is increasingly mimicked in bio-inspired engineering composites. Here, we report the use of a simple and versatile technique based on doctor-blading to fabricate staggered composites of microscopic alumina tablets with high alignment in a chitosan matrix. Tensile tests on these nacre-like materials show that the modulus and strength of the composite films are enhanced by the incorporation of ceramic tablets, but only up to 15vol% after which all properties degrade. This phenomenon, also reported in the past for most of nacre-like materials, composed of micro/nano tablets, obtained from different techniques, has been limiting our ability to produce large volumes of high-performance nacre-like materials. Examination of the structure of the films revealed that at lower tablet concentrations the tablets are well-aligned and well dispersed thorough the volume of the film. At 15vol% and beyond, we observed tablet misalignment and clustering. In order to investigate the impact of these imperfections on material performance we developed large scale finite element models representative of the structure of the composite films. These models show that the mechanical performance significantly degrades with tablet misalignment, and especially at high tablet concentrations. The simulations along with the SEM images therefore quantitatively explain the experimental trends, e.g. the degradation of mechanical properties at high tablet contents.


Assuntos
Óxido de Alumínio/química , Materiais Biomiméticos/química , Análise de Elementos Finitos , Teste de Materiais , Nácar , Quitosana/química , Estresse Mecânico
5.
J Mech Behav Biomed Mater ; 52: 95-107, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25457170

RESUMO

Fish scales from modern teleost fish are high-performance materials made of cross-plies of collagen type I fibrils reinforced with hydroxyapatite. Recent studies on this material have demonstrated the remarkable performance of this material in tension and against sharp puncture. Although it is known that teleost fish scales are extremely tough, actual measurements of fracture toughness have so far not been reported because it is simply not possible to propagate a crack in this material using standard fracture testing configurations. Here we present a new fracture test setup where the scale is clamped between two pairs of miniature steel plates. The plates transmit the load uniformly, prevent warping of the scale and ensure a controlled crack propagation. We report a toughness of 15 to 18kJm(-2) (depending on the direction of crack propagation), which confirms teleost fish scales as one of the toughest biological material known. We also tested the individual bony layers, which we found was about four times less tough than the collagen layer because of its higher mineralization. The mechanical response of the scales also depends on the cohesion between fibrils and plies. Delamination tests show that the interface between the collagen fibrils is three orders of magnitude weaker than the scale, which explains the massive delamination and defibrillation observed experimentally. Finally, simple fracture mechanics models showed that process zone toughening is the principal source of toughening for the scales, followed by bridging by delaminated fibrils. These findings can guide the design of cross-ply composites and engineering textiles for high-end applications. This study also hints on the fracture mechanics and performance of collagenous materials with similar microstructures: fish skin, lamellar bone or tendons.


Assuntos
Colágeno/química , Peixes/anatomia & histologia , Teste de Materiais , Fenômenos Mecânicos , Animais , Fenômenos Biomecânicos , Osso e Ossos
6.
Nat Commun ; 5: 3166, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24473226

RESUMO

Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of 'stamp holes'. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.

7.
J R Soc Interface ; 10(89): 20130711, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24068176

RESUMO

How to arrange soft materials with strong but brittle reinforcements to achieve attractive combinations of stiffness, strength and toughness is an ongoing and fascinating question in engineering and biological materials science. Recent advances in topology optimization and bioinspiration have brought interesting answers to this question, but they provide only small windows into the vast design space associated with this problem. Here, we take a more global approach in which we assess the mechanical performance of thousands of possible microstructures. This exhaustive exploration gives a global picture of structure-property relationships and guarantees that global optima can be found. Landscapes of optimum solutions for different combinations of desired properties can also be created, revealing the robustness of each of the solutions. Interestingly, while some of the major hybrid designs used in engineering are absent from the set of solutions, the microstructures emerging from this process are reminiscent of materials, such as bone, nacre or spider silk.


Assuntos
Materiais Biocompatíveis/química , Microtecnologia , Fenômenos Biomecânicos , Modelos Teóricos , Resistência à Tração
8.
Acta Biomater ; 8(9): 3349-59, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22588071

RESUMO

Extracellular proteins play a key role in generating and maintaining cohesion and adhesion in biological tissues. These "natural glues" are involved in vital biological processes such as blood clotting, wound healing and maintaining the structural integrity of tissues. Macromolecular assemblies of proteins can be functionally stabilized in a variety of ways in situ that include ionic interactions as well as covalent crosslinking to form protein networks that can extend both within and between tissues. Within tissues, myriad cohesive forces are required to preserve tissue integrity and function, as are additional appropriate adhesive forces at interfaces both within and between tissues of differing composition. While the mechanics of some key structural adhesive proteins have been characterized in tensile experiments at both the macroscopic and single protein levels, the fracture toughness of thin proteinaceous interfaces has never been directly measured. Here, we describe a novel and simple approach to measure the cohesive behavior and toughness of thin layers of proteinaceous adhesives. The test is based on the standard double-cantilever beam test used for engineering adhesives, which was adapted to take into account the high compliance of the interface compared with the beams. This new "rigid double-cantilever beam" method enables stable crack propagation through an interfacial protein layer, and provides a direct way to measure its full traction-separation curve. The method does not require any assumption of the shape of the cohesive law, and the results provide abundant information contributing to understanding the structural, chemical and molecular mechanisms acting in biological adhesion. As an example, results are presented using this method for thin films of fibrin-a protein involved in blood clotting and used clinically as a tissue bio-adhesive after surgery-with the effects of calcium and crosslinking by Factor XIII being examined. Finally, a simple model is proposed, demonstrating how a bell-shaped cohesive law forms during the failure of the fibrin interface based on an eight-chain model whose structure degrades and changes configuration with stress.


Assuntos
Modelos Teóricos , Adesivos Teciduais , Fibrina/química , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA