Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 213(Pt 7): 1079-91, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20228344

RESUMO

Understanding the extent to which changes in muscle form and function underlie ontogenetic changes in locomotory behaviors and performance is important in understanding the evolution of musculoskeletal systems and also the ecology of different life stages. We explored ontogenetic changes in the structure, myosin heavy chain (MHC) expression and contractile properties of the circular muscles that provide power for jet locomotion in the long-finned squid Doryteuthis pealeii. The circular muscle fibers of newly hatched paralarvae had different sizes, shapes, thick filament lengths, thin:thick filament ratio, myofilament organization and sarcoplasmic reticulum (SR) distribution than those of adults. Viewed in cross section, most circular muscle cells were roughly triangular or ovoid in shape with a core of mitochondria; however, numerous muscle cells with crescent or other unusual cross-sectional shapes and muscle cells with unequal distributions of mitochondria were present in the paralarvae. The frequency of these muscle cells relative to 'normal' circular muscle cells ranged from 1:6 to 1:10 among the 19 paralarvae we surveyed. The thick filaments of the two types of circular fibers, superficial mitochondria-rich (SMR) and central mitochondria-poor (CMP), differed slightly in length among paralarvae with thick filament lengths of 0.83+/-0.15 microm and 0.71+/-0.1 microm for the SMR and CMP fibers, respectively (P 0.05; ANOVA). During ontogeny the thick filament lengths of both the CMP and SMR fibers increased significantly to 1.78+/-0.27 microm and 3.12+/-0.56 microm, respectively, in adults (P<0.0001 for both comparisons; ANOVA with Tukey's highly significant difference post hoc tests). When sectioned parallel to their long axes, the SMR and CMP fibers of both paralarvae and adults exhibited the myofilament arrangements typical of obliquely striated muscle cells but the angle of obliquity of the dense bodies was 22.8+/-2.4 deg. and 4.6+/-0.87 deg. for paralarvae and adults, respectively. There were also differences in the distribution of the anastomosing network of SR. In paralarvae, the outer and central zones of SR were well developed but the intramyoplasmic zone was greatly reduced in some cells or was scattered non-uniformly across the myoplasm. Whereas in adults the intramyoplasmic SR region was composed primarily of flattened tubules, it was composed primarily of rounded vesicles or tubules when present in the paralarvae. The ontogenetic differences in circular muscle structure were correlated with significant differences in their contractile properties. In brief tetanus at 20 degrees C, the mean unloaded shortening velocity of the paralarval circular muscle preparations was 9.1 L(0) s(-1) (where L(0) was the preparation length that generated the peak isometric stress), nearly twice that measured in other studies for the CMP fibers of adults. The mean peak isometric stress was 119+/-15 mN mm(-2) physiological cross section, nearly half that measured for the CMP fibers of adults. Reverse transcriptase-polymerase chain reaction analysis of paralarval and adult mantle samples revealed very similar expression patterns of the two known isoforms of squid MHC. The ontogenetic differences in the structure and physiology of the circular muscles may result in more rapid mantle movements during locomotion. This prediction is consistent with jet pulse durations observed in other studies, with shorter jet pulses providing hydrodynamic advantages for paralarvae.


Assuntos
Estruturas Animais/anatomia & histologia , Estruturas Animais/fisiologia , Decapodiformes/anatomia & histologia , Decapodiformes/fisiologia , Locomoção/fisiologia , Músculos/anatomia & histologia , Músculos/fisiologia , Animais , Regulação da Expressão Gênica , Larva/fisiologia , Larva/ultraestrutura , Modelos Biológicos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculos/ultraestrutura , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo
2.
Bioinspir Biomim ; 3: 014001, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18364559

RESUMO

The marine boxfishes have rigid keeled exteriors (carapaces) unlike most fishes, yet exhibit high stability, high maneuverability and relatively low drag given their large cross-sectional area. These characteristics lend themselves well to bioinspired design. Based on previous stereolithographic boxfish model experiments, it was determined that vortical flows develop around the carapace keels, producing self-correcting forces that facilitate swimming in smooth trajectories. To determine if similar self-correcting flows occur in live, actively swimming boxfishes, two species of boxfishes (Ostracion meleagris and Lactophrys triqueter) were induced to swim against currents in a water tunnel, while flows around the fishes were quantified using digital particle image velocimetry. Significant pitch events were rare and short lived in the fishes examined. When these events were observed, spiral flows around the keels qualitatively similar to those observed around models were always present, with greater vortex circulation occurring as pitch angles deviated from 0 degrees . Vortex circulation was higher in live fishes than models presumably because of pectoral fin interaction with the keel-induced flows. The ability of boxfishes to modify their underlying self-correcting system with powered fin control is important for achieving high levels of both stability and maneuverability. Although the challenges of performing stability and maneuverability research on fishes are significant, the results of this study together with future studies employing innovative new approaches promise to provide valuable inspiration for the designers of bioinspired aquatic vehicles.


Assuntos
Relógios Biológicos/fisiologia , Biomimética/métodos , Retroalimentação/fisiologia , Modelos Biológicos , Reologia/métodos , Natação/fisiologia , Tetraodontiformes/fisiologia , Animais , Simulação por Computador
3.
J Exp Biol ; 204(Pt 21): 3639-53, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11719530

RESUMO

Because of the inherent inefficiency of jet propulsion, squid are considered to be at a competitive disadvantage compared with fishes, which generally depend on forms of undulatory/oscillatory locomotion. Some squid, such as the brief squid Lolliguncula brevis, swim at low speeds in shallow-water complex environments, relying heavily on fin activity. Consequently, their swimming costs may be lower than those of the faster, more pelagic squid studied previously and competitive with those of ecologically relevant fishes. To examine aerobic respiratory swimming costs, O(2) consumption rates were measured for L. brevis of various sizes (2-9 cm dorsal mantle length, DML) swimming over a range of speeds (3-30 cm s(-1)) in swim tunnel respirometers, while their behavior was videotaped. Using kinematic data from swimming squid and force data from models, power curves were also generated. Many squid demonstrated partial (J-shaped) or full (U-shaped) parabolic patterns of O(2) consumption rate as a function of swimming speed, with O(2) consumption minima at 0.5-1.5 DML s(-1). Power curves derived from hydrodynamic data plotted as a function of swimming speed were also parabolic, with power minima at 1.2-1.7 DML s(-1). The parabolic relationship between O(2) consumption rate/power and speed, which is also found in aerial flyers such as birds, bats and insects but rarely in aquatic swimmers because of the difficulties associated with low-speed respirometry, is the result of the high cost of generating lift and maintaining stability at low speeds and overcoming drag at high speeds. L. brevis has a lower rate of O(2) consumption than the squid Illex illecebrosus and Loligo opalescens studied in swim tunnel respirometers and is energetically competitive (especially at O(2) consumption minima) with fishes, such as striped bass, mullet and flounder. Therefore, the results of this study indicate that, like aerial flyers, some negatively buoyant nekton have parabolic patterns of O(2) consumption rate/power as a function of speed and that certain shallow-water squid using considerable fin activity have swimming costs that are competitive with those of ecologically relevant fishes.


Assuntos
Decapodiformes/fisiologia , Consumo de Oxigênio , Natação/fisiologia , Aerobiose , Animais , Fenômenos Biomecânicos , Gravação em Vídeo
4.
J Exp Biol ; 204(Pt 21): 3655-82, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11719531

RESUMO

Although squid are among the most versatile swimmers and rely on a unique locomotor system, little is known about the swimming mechanics and behavior of most squid, especially those that swim at low speeds in inshore waters. Shallow-water brief squid Lolliguncula brevis, ranging in size from 1.8 to 8.9 cm in dorsal mantle length (DML), were placed in flumes and videotaped, and the data were analyzed using motion-analysis equipment. Flow visualization and force measurement experiments were also performed in water tunnels. Mean critical swimming speeds (U(crit)) ranged from 15.3 to 22.8 cm s(-1), and mean transition speeds (U(t); the speed above which squid swim exclusively in a tail-first orientation) varied from 9.0 to 15.3 cm s(-1). At low speeds, negatively buoyant brief squid generated lift and/or improved stability by positioning the mantle and arms at high angles of attack, directing high-speed jets downwards (angles >50 degrees ) and using fin activity. To reduce drag at high speeds, the squid decreased angles of attack and swam tail-first. Fin motion, which could not be characterized exclusively as drag- or lift-based propulsion, was used over 50-95 % of the sustained speed range and provided as much as 83.8 % of the vertical and 55.1 % of the horizontal thrust. Small squid (<3.0 cm DML) used different swimming strategies from those of larger squid, possibly to maximize thrust benefits from vortex ring formation. Furthermore, brief squid employed various unsteady behaviors, such as manipulating funnel diameter during jetting, altering arm position and swimming in different orientations, to boost swimming performance. These results demonstrate that locomotion in slow-swimming squid is complex, involving intricate spatial and temporal interactions between the mantle, fins, arms and funnel.


Assuntos
Comportamento Animal/fisiologia , Decapodiformes/fisiologia , Natação/fisiologia , Animais , Fenômenos Biomecânicos , Gravação em Vídeo
5.
Biol Bull ; 200(1): 59-66, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11249212

RESUMO

Circular mantle muscle of squids and cuttlefishes consists of distinct zones of aerobic and anaerobic muscle fibers that are thought to have functional roles analogous to red and white muscle in fishes. To test predictions of the functional role of the circular muscle zones during swimming, electromyograms (EMGs) in conjunction with video footage were recorded from brief squid Lolliguncula brevis (5.0-6.8 cm dorsal mantle length, 10.9-18.3 g) swimming in a flume at speeds of 3-27 cm s(-1). In one set of experiments, in which EMGs were recorded from electrodes intersecting both the central anaerobic and peripheral aerobic circular mantle muscles, electrical activity was detected during each mantle contraction at all swimming speeds, and the amplitude and frequency of responses increased with speed. In another set of experiments, in which EMGs were recorded from electrodes placed in the central anaerobic circular muscle fibers alone, electrical activity was not detected during mantle contraction until speeds of about 15 cm s(-1), when EMG activity was sporadic. At speeds greater than 15 cm s(-1), the frequency of central circular muscle activity subsequently increased with swimming speed until maximum speeds of 21-27 cm s(-1), when muscular activity coincided with the majority of mantle contractions. These results indicate that peripheral aerobic circular muscle is used for low, intermediate, and probably high speeds, whereas central anaerobic circular muscle is recruited at intermediate speeds and used progressively more with speed for powerful, unsteady jetting. This is significant because it suggests that there is specialization and efficient use of locomotive muscle in squids.


Assuntos
Decapodiformes/fisiologia , Eletromiografia , Fibras Musculares Esqueléticas/fisiologia , Aerobiose , Anaerobiose , Animais , Decapodiformes/anatomia & histologia , Contração Muscular , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA