RESUMO
Store-operated calcium entry (SOCE) plays a crucial role in maintaining cellular calcium homeostasis. This mechanism involves proteins, such as stromal interaction molecule 1 (STIM1) and ORAI1. Mutations in the genes encoding these proteins, especially STIM1, can lead to various diseases, including CRAC channelopathies associated with severe combined immunodeficiency. Herein, we describe a novel homozygous mutation, NM_003156 c.792-3C > G, in STIM1 in a patient with a clinical profile of CRAC channelopathy, including immune system deficiencies and muscle weakness. Functional analyses revealed three distinct spliced forms in the patient cells: wild-type, exon 7 skipping, and intronic retention. Calcium influx analysis revealed impaired SOCE in the patient cells, indicating a loss of STIM1 function. We developed an antisense oligonucleotide treatment that improves STIM1 splicing and highlighted its potential as a therapeutic approach. Our findings provide insights into the complex effects of STIM1 mutations and shed light on the multifaceted clinical presentation of the patient.
Assuntos
Cálcio , Mutação , Proteínas de Neoplasias , Molécula 1 de Interação Estromal , Humanos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Cálcio/metabolismo , Canalopatias/genética , Masculino , Canais de Cálcio Ativados pela Liberação de Cálcio/genética , Canais de Cálcio Ativados pela Liberação de Cálcio/metabolismo , Feminino , Imunodeficiência Combinada Severa/genética , Proteína ORAI1/genética , Proteína ORAI1/metabolismoRESUMO
Muscular dystrophies (MDs) are inherited genetic diseases causing weakness and degeneration of muscles. The distribution of muscle weakness differs between MDs, involving distal muscles or proximal muscles. While the mutations in most of the MD-associated genes lead to either distal or proximal onset, there are also genes whose mutations can cause both types of onsets. We hypothesized that the genes associated with different MD onsets code proteins with distinct cellular functions. To investigate this, we collected the MD-associated genes and assigned them to three onset groups: genes mutated only in distal onset dystrophies, genes mutated only in proximal onset dystrophies, and genes mutated in both types of onsets. We then systematically evaluated the cellular functions of these gene sets with computational strategies based on functional enrichment analysis and biological network analysis. Our analyses demonstrate that genes mutated in either distal or proximal onset MDs code proteins linked with two distinct sets of cellular processes. Interestingly, these two sets of cellular processes are relevant for the genes that are associated with both onsets. Moreover, the genes associated with both onsets display high centrality and connectivity in the network of muscular dystrophy genes. Our findings support the hypothesis that the proteins associated with distal or proximal onsets have distinct functional characteristics, whereas the proteins associated with both onsets are multifunctional.
Assuntos
Debilidade Muscular , Distrofias Musculares , Mutação , Humanos , Distrofias Musculares/genética , Debilidade Muscular/genética , Redes Reguladoras de Genes , Biologia Computacional/métodos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Músculo Esquelético/patologiaRESUMO
Spasticity, affecting â¼75% of patients with spinal cord injury (SCI), leads to hyperreflexia, muscle spasms, and cocontractions of antagonist muscles, greatly affecting their quality of life. Spasticity primarily stems from the hyperexcitability of motoneurons below the lesion, driven by an upregulation of the persistent sodium current and a downregulation of chloride extrusion. This imbalance results from the post-SCI activation of calpain1, which cleaves Nav1.6 channels and KCC2 cotransporters. Our study was focused on mitigating spasticity by specifically targeting calpain1 in spinal motoneurons. We successfully transduced lumbar motoneurons in adult rats with SCI using intrathecal administration of adeno-associated virus vector serotype 6, carrying a shRNA sequence against calpain1. This approach significantly reduced calpain1 expression in transduced motoneurons, leading to a noticeable decrease in spasticity symptoms, including hyperreflexia, muscle spasms, and cocontractions in hindlimb muscles, which are particularly evident in the second month post-SCI. In addition, this decrease, which prevented the escalation of spasticity to a severe grade, paralleled the restoration of KCC2 levels in transduced motoneurons, suggesting a reduced proteolytic activity of calpain1. These findings demonstrate that inhibiting calpain1 in motoneurons is a promising strategy for alleviating spasticity in SCI patients.
Assuntos
Traumatismos da Medula Espinal , Simportadores , Animais , Ratos , Neurônios Motores/metabolismo , Espasticidade Muscular/genética , Espasticidade Muscular/terapia , Qualidade de Vida , Reflexo Anormal , Espasmo/metabolismo , Espasmo/patologia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Simportadores/genéticaRESUMO
BACKGROUND: Chronic kidney disease (CKD) is associated with a significant decrease in muscle strength and mass, possibly related to muscle cell damage by uremic toxins. Here, we studied in vitro and in vivo the effect of indoxyl sulfate (IS), an indolic uremic toxin, on myoblast proliferation, differentiation and expression of myogenic regulatory factors (MRF)-myoblast determination protein 1 (MyoD1), myogenin (Myog), Myogenic Factor 5 (Myf5) and myogenic regulatory factor 4 (Myf6/MRF4)-and expression of myosin heavy chain, Myh2. METHODS: C2C12 myoblasts were cultured in vitro and differentiated in myotubes for 7 days in the presence of IS at a uremic concentration of 200 µM. Myocytes morphology and differentiation was analyzed after hematoxylin-eosin staining. MRF genes' expression was studied using reverse transcription polymerase chain reaction in myocytes and 5/6th nephrectomized mice muscle. Myf6/MRF4 protein expression was studied using enzyme-linked immunosorbent assay; MYH2 protein expression was studied using western blotting. The role of Aryl Hydrocarbon Receptor (AHR)-the cell receptor of IS-was studied by adding an AHR inhibitor into the cell culture milieu. RESULTS: In the presence of IS, the myotubes obtained were narrower and had fewer nuclei than control myotubes. The presence of IS during differentiation did not modify the gene expression of the MRFs Myf5, MyoD1 and Myog, but induced a decrease in expression of Myf6/MRF4 and MYH2 at the mRNA and the protein level. AHR inhibition by CH223191 did not reverse the decrease in Myf6/MRF4 mRNA expression induced by IS, which rules out the implication of the ARH genomic pathway. In 5/6th nephrectomized mice, the Myf6/MRF4 gene was down-regulated in striated muscles. CONCLUSION: In conclusion, IS inhibits Myf6/MRF4 and MYH2 expression during differentiation of muscle cells, which could lead to a defect in myotube structure. Through these new mechanisms, IS could participate in muscle atrophy observed in CKD.
Assuntos
Indicã , Insuficiência Renal Crônica , Animais , Camundongos , Indicã/farmacologia , Regulação para Baixo , Diferenciação Celular/genética , Músculo Esquelético , RNA MensageiroRESUMO
Dysferlinopathies are a group of autosomal recessive muscular dystrophies caused by pathogenic variants in the DYSF gene. While several animal models of dysferlinopathy have been developed, most of them involve major disruptions of the Dysf gene locus that are not optimal for studying human dysferlinopathy, which is often caused by single nucleotide substitutions. In this study, the authors describe a new murine model of dysferlinopathy that carries a nonsense mutation in Dysf exon 32, which has been identified in several patients with dysferlinopathy. This mouse model, called Dysf p.Y1159X/p.Y1159X, displays several molecular, histological, and functional defects observed in dysferlinopathy patients and other published mouse models. This mutant mouse model is expected to be useful for testing various therapeutic approaches such as termination codon readthrough, pharmacological approaches, and exon skipping. Therefore, the data presented in this study strongly support the use of this animal model for the development of preclinical strategies for the treatment of dysferlinopathies.
RESUMO
Charcot-Marie-Tooth (CMT) disease is one of the most common inherited neurological disorders, affecting either axons from the motor and/or sensory neurons or Schwann cells of the peripheral nervous system (PNS) and caused by more than 100 genes. We previously identified mutations in FGD4 as responsible for CMT4H, an autosomal recessive demyelinating form of CMT disease. FGD4 encodes FRABIN, a GDP/GTP nucleotide exchange factor, particularly for the small GTPase Cdc42. Remarkably, nerves from patients with CMT4H display excessive redundant myelin figures called outfoldings that arise from focal hypermyelination, suggesting that FRABIN could play a role in the control of PNS myelination. To gain insights into the role of FGD4/FRABIN in Schwann cell myelination, we generated a knockout mouse model (Fgd4SC-/-), with conditional ablation of Fgd4 in Schwann cells. We show that the specific deletion of FRABIN in Schwann cells leads to aberrant myelination in vitro, in dorsal root ganglia neuron/Schwann cell co-cultures, as well as in vivo, in distal sciatic nerves from Fgd4SC-/- mice. We observed that those myelination defects are related to an upregulation of some interactors of the NRG1 type III/ERBB2/3 signalling pathway, which is known to ensure a proper level of myelination in the PNS. Based on a yeast two-hybrid screen, we identified SNX3 as a new partner of FRABIN, which is involved in the regulation of endocytic trafficking. Interestingly, we showed that the loss of FRABIN impairs endocytic trafficking, which may contribute to the defective NRG1 type III/ERBB2/3 signalling and myelination. Using RNA-Seq, in vitro, we identified new potential effectors of the deregulated pathways, such as ERBIN, RAB11FIP2 and MAF, thereby providing cues to understand how FRABIN contributes to proper ERBB2 trafficking or even myelin membrane addition through cholesterol synthesis. Finally, we showed that the re-establishment of proper levels of the NRG1 type III/ERBB2/3 pathway using niacin treatment reduces myelin outfoldings in nerves of CMT4H mice. Overall, our work reveals a new role of FRABIN in the regulation of NRG1 type III/ERBB2/3 NRG1signalling and myelination and opens future therapeutic strategies based on the modulation of the NRG1 type III/ERBB2/3 pathway to reduce CMT4H pathology and more generally other demyelinating types of CMT disease.
Assuntos
Doença de Charcot-Marie-Tooth , Animais , Camundongos , Doença de Charcot-Marie-Tooth/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos Knockout , Mutação , Neuregulina-1/metabolismo , Células de Schwann , Nervo Isquiático/patologia , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismoRESUMO
The implementation of high-throughput diagnostic sequencing has led to the generation of large amounts of mutational data, making their interpretation more complex and responsible for long delays. It has been important to prioritize certain analyses, particularly those of "actionable" genes in diagnostic situations, involving specific treatment and/or management. In our project, we carried out an objective assessment of the clinical actionability of genes involved in myopathies, for which only few data obtained methodologically exist to date. Using the ClinGen Actionability criteria, we scored the clinical actionability of all 199 genes implicated in myopathies published by FILNEMUS for the "National French consensus on gene Lists for the diagnosis of myopathies using next generation sequencing". We objectified that 63 myopathy genes were actionable with the currently available data. Among the 36 myopathy genes with the highest actionability scores, only 8 had been scored to date by ClinGen. The data obtained through these methodological tools are an important resource for strategic choices in diagnostic approaches and the management of genetic myopathies. The clinical actionability of genes has to be considered as an evolving concept, in relation to progresses in disease knowledge and therapeutic approaches.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Doenças Musculares , Consenso , Humanos , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/terapia , Mutação , Assistência ao PacienteRESUMO
Exon skipping is a promising therapeutic approach. One important condition for this approach is that the exon-skipped form of the gene can at least partially perform the required function and lead to improvement of the phenotype. It is therefore critical to identify the exons that can be skipped without a significant deleterious effect on the protein function. Pathogenic variants in the DMD gene are responsible for Duchenne muscular dystrophy (DMD). We report for the first time a deletion of the in-frame exon 49 associated with a strikingly normal muscular phenotype. Based on this observation, and on previously known therapeutic approaches using exon skipping in DMD for other single exons, we aimed to extend the clinical use of exon skipping for patients carrying truncating mutations in exon 49. We first determined the precise genomic position of the exon 49 deletion in our patients. We then demonstrated the feasibility of skipping exon 49 using an in vitro AON (antisense oligonucleotide) approach in human myotubes carrying a truncating pathogenic variant as well as in healthy ones. This work is a proof of concept aiming to expand exon-skipping approaches for DMD exon 49.
Assuntos
Distrofina , Distrofia Muscular de Duchenne , Distrofina/genética , Éxons/genética , Humanos , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêuticoRESUMO
Hereditary myopathies are a group of genetically determined muscle disorders comprising more than 300 entities. In Chile, there are no specific registries of the distinct forms of these myopathies. We now report the genetic findings of a series of Chilean patients presenting with limb-girdle muscle weakness of unknown etiology. Eighty-two patients were explored using high-throughput sequencing approaches with neuromuscular gene panels, establishing a definite genetic diagnosis in 49 patients (59.8%) and a highly probable genetic diagnosis in eight additional cases (9.8%). The most frequent causative genes identified were DYSF and CAPN3, accounting for 22% and 8.5% of the cases, respectively, followed by DMD (4.9%) and RYR1 (4.9%). The remaining 17 causative genes were present in one or two cases only. Twelve novel variants were identified. Five patients (6.1%) carried a variant of uncertain significance in genes partially matching the clinical phenotype. Twenty patients (24.4%) did not carry a pathogenic or likely pathogenic variant in the phenotypically related genes, including five patients (6.1%) presenting an autoimmune neuromuscular disorder. The relative frequency of the different forms of myopathy in Chile is like that of other series reported from different regions of the world with perhaps a relatively higher incidence of dysferlinopathy.
Assuntos
Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Chile , Perfil Genético , Humanos , Debilidade Muscular/genética , Distrofia Muscular do Cíngulo dos Membros/epidemiologia , Distrofia Muscular do Cíngulo dos Membros/genéticaRESUMO
BACKGROUND: Myostatin and activin A induce muscle wasting by activating the ubiquitin proteasome system and inhibiting the Akt/mammalian target of rapamycin pathway. In chronic kidney disease (CKD), myostatin and activin A plasma concentrations are increased, but it is unclear if there is increased production or decreased renal clearance. METHODS: We measured myostatin and activin A concentrations in 232 CKD patients and studied their correlation with estimated glomerular filtration rate (eGFR). We analyzed the myostatin gene (MSTN) expression in muscle biopsies of hemodialysis (HD) patients. We then measured circulating myostatin and activin A in plasma and the Mstn and Inhba expression in muscles, kidney, liver and heart of two CKD mice models (adenine and 5/6 nephrectomy models). Finally, we analyzed whether the uremic toxin indoxyl sulfate (IS) increased Mstn expression in mice and cultured muscle cells. RESULTS: In patients, myostatin and activin A were inversely correlated with eGFR. MSTN expression was lower in HD patients' muscles (vastus lateralis) than in controls. In mice with CKD, myostatin and activin A blood concentrations were increased. Mstn was not upregulated in CKD mice tissues. Inha was upregulated in kidney and heart. Exposure to IS did not induce Mstn upregulation in mouse muscles and in cultured myoblasts and myocytes. CONCLUSION: During CKD, myostatin and activin A blood concentrations are increased. Myostatin is not overproduced, suggesting only an impaired renal clearance, but activin A is overproduced in the kidney and heart. We propose to add myostatin and activin A to the list of uremic toxins.
Assuntos
Miostatina , Insuficiência Renal Crônica , Ativinas/metabolismo , Animais , Humanos , Indicã , Mamíferos/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Miostatina/genética , Insuficiência Renal Crônica/patologiaRESUMO
We recently described new pathogenic variants in VRK1, in patients affected with distal Hereditary Motor Neuropathy associated with upper motor neurons signs. Specifically, we provided evidences that hiPSC-derived Motor Neurons (hiPSC-MN) from these patients display Cajal Bodies (CBs) disassembly and defects in neurite outgrowth and branching. We here focused on the Axonal Initial Segment (AIS) and the related firing properties of hiPSC-MNs from these patients. We found that the patient's Action Potential (AP) was smaller in amplitude, larger in duration, and displayed a more depolarized threshold while the firing patterns were not altered. These alterations were accompanied by a decrease in the AIS length measured in patients' hiPSC-MNs. These data indicate that mutations in VRK1 impact the AP waveform and the AIS organization in MNs and may ultimately lead to the related motor neuron disease.
Assuntos
Potenciais de Ação/fisiologia , Segmento Inicial do Axônio/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neurônios Motores/fisiologia , Proteínas Serina-Treonina Quinases/genética , Linhagem Celular , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/fisiopatologia , Mutação , Mioblastos/metabolismoRESUMO
BACKGROUND AND AIMS: The identification of underlying genes of genetic conditions has expanded greatly in the past decades, which has broadened the field of genes responsible for inherited neuromuscular diseases. We aimed to investigate mutations associated with neuromuscular disorders phenotypes in 2 Moroccan families. MATERIAL AND METHODS: Next-generation sequencing combined with Sanger sequencing could assist with understanding the hereditary variety and underlying disease mechanisms in these disorders. RESULTS: Two novel homozygous mutations were described in this study. The SIL1 mutation is the first identified in the Moroccan population, the mutation was identified as the main cause of Marinesco-Sjogren syndrome in one patient. While the second mutation identified in the fatty acid 2-hydroxylase gene (FA2H) was associated with the Spastic paraplegia 35 in another patient, both transmitted in an autosomal recessive pattern. DISCUSSION AND CONCLUSIONS: These conditions are extremely rare in the North African population and may be underdiagnosed due to overlapping clinical characteristics and heterogeneity of these diseases. We have reported in this study mutations associated with the diseases found in the patients. In addition, we have narrowed the phenotypic spectrum, as well as the diagnostic orientation of patients with neuromuscular disorders, who might have very similar symptoms to other disease groups.
Assuntos
Transtornos Heredodegenerativos do Sistema Nervoso , Doenças Neuromusculares , Degenerações Espinocerebelares , Transtornos Heredodegenerativos do Sistema Nervoso/diagnóstico , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Humanos , Marrocos , Mutação , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/genética , Fenótipo , Degenerações Espinocerebelares/diagnóstico , Degenerações Espinocerebelares/genéticaRESUMO
Dysferlinopathies are a group of muscular dystrophies caused by recessive mutations in the DYSF gene encoding the dysferlin protein. Dysferlin is a transmembrane protein involved in several muscle functions like T-tubule maintenance and membrane repair. In 2009, a study showed the existence of fourteen dysferlin transcripts generated from alternative splicing. We were interested in dysferlin transcripts containing the exon 40a, and among them the transcript 11 which contains all the canonical exons and exon 40a. This alternative exon encodes a protein region that is cleaved by calpains during the muscle membrane repair mechanism. Firstly, we tested the impact of mutations in exon 40a on its cleavability by calpains. We showed that the peptide encoded by the exon 40a domain is resistant to mutations and that calpains cleaved dysferlin in the first part of DYSF exon 40a. To further explore the implication of this transcript in cell functions, we performed membrane repair, osmotic shock, and transferrin assay. Our results indicated that dysferlin transcript 11 is a key factor in the membrane repair process. Moreover, dysferlin transcript 11 participates in other cell functions such as membrane protection and vesicle trafficking. These results support the need to restore the dysferlin transcript containing the alternative exon 40a in patients affected with dysferlinopathy.
RESUMO
BACKGROUND: Congenital myasthenic syndromes (CMS) are associated with defects in the structure and the function of neuromuscular junctions. These rare disorders can result from mutations in the collagenic tail of endplate acetylcholinesterase (COLQ) essentially associated with autosomal recessive inheritance. With the lowered cost of genetic testing and increased access to next-generation sequencing, many mutations have been reported to date. METHODS AND RESULTS: In this study we identified the first COLQ homozygous mutation c.1193T>A in the North African population. This study outlines the genetic and phenotypic features of a CMS patient in a Moroccan family. It also describes a novel COLQ missense mutation associated with CMS-5. CONCLUSION: COLQ mutations are probably underdiagnosed in these North African populations, this is an issue as CMS-5 may be treated with ephedrine, and albuterol. Indeed, patients can seriously benefit and even recover after the treatment that should be planned according to genetic tests and clinical findings.
Assuntos
Síndromes Miastênicas Congênitas/genética , Acetilcolinesterase/genética , África do Norte , Sequência de Bases , Colágeno/genética , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Proteínas Musculares/genética , Mutação/genética , LinhagemRESUMO
PURPOSE: Recent evolution of sequencing technologies and the development of international standards in variant interpretation have profoundly changed the diagnostic approaches in clinical genetics. As a consequence, many variants that were initially claimed to be disease-causing can be now reclassified as benign or uncertain in light of the new data available. Unfortunately, the misclassified variants are still present in the scientific literature and variant databases, greatly interfering with interpretation of diagnostic sequencing results. Despite the urgent need, large-scale efforts to update the classifications of these variants are still not sufficient. METHODS: We retrospectively analyzed 176 DYSF gene variants that were identified in dysferlinopathy patients referred to the Marseille Medical Genetics Department for diagnostic sequencing since 2001. RESULTS: We reclassified all variants into five-tier American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) pathogenicity classes, revealing changed pathogenicity for 17 variants. We then updated the information for the variants that have been previously published in the variant database and submitted 46 additional DYSF variants. CONCLUSION: Besides direct benefit for dysferlinopathy diagnostics, our study contributes to the much needed effort to reanalyze variants from previously published cohorts and to work with curators of variant databases to update the entries for erroneously classified variants.
Assuntos
Variação Genética , Distrofia Muscular do Cíngulo dos Membros , Disferlina/genética , Testes Genéticos , Variação Genética/genética , Humanos , Estudos RetrospectivosRESUMO
STIM1, the stromal interaction molecule 1, is the key protein for maintaining calcium concentration in the endoplasmic reticulum by triggering the Store Operated Calcium Entry (SOCE). Bi-allelic mutations in STIM1 gene are responsible for a loss-of-function in patients affected with a CRAC channelopathy syndrome in which severe combined immunodeficiency syndrome (SCID-like), autoimmunity, ectodermal dysplasia and muscle hypotonia are combined. Here, we studied two siblings from a consanguineous Syrian family, presenting with muscle weakness, hyperlaxity, elastic skin, tooth abnormalities, dysmorphic facies, hypoplastic patellae and history of respiratory infections. Using exome sequencing, we have identified a new homozygous frameshift mutation in STIM1: c.685delT [p.(Phe229Leufs*12)], leading to a complete loss of STIM1 protein. In this study, we describe an unusual phenotype linked to STIM1 mutations, combining clinical signs usually observed in different STIM1-related diseases. In particular, we confirmed that the complete loss of STIM1 function is not always associated with severe immune disorders. Altogether, our results broaden the spectrum of phenotypes associated with mutations in STIM1 and opens new perspectives on the pathological mechanisms associated with a defect in the proteins constituting the SOCE complex.