Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 867: 161517, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36638974

RESUMO

The American Southwest is experiencing drastic increases in aridity and wildfire incidence, triggering conversion of some frequent surface forests to non-forest. Extensive research has focused on these dynamics in regional ponderosa pine forests, but we know much less about Madrean pine-oak forests, which are broadly distributed from the Sierra Madre in Mexico to the Sky Island mountain ranges in the U.S. Increased fire incidence and drought in these forests are limiting pine regeneration and driving conversion of biodiverse forests to oak shrublands. We investigated regeneration patterns in Pinus engelmannii and P. leiophylla during severe drought 10 years after the Horseshoe Two Megafire in the Chiricahua Mountains, Arizona-a follow-up to an assessment five years post-fire. In long-term plots, we examined changes in pine seedling and resprout recruitment. Past research demonstrated that topography and fire severity influenced pine recruitment across environmental gradients. We investigated here whether Landsat-8 normalized difference vegetation index (NDVI) and evapotranspiration estimated by the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) added explanatory value to our understanding of these patterns. Conversion of Madrean pine-oak forest to oak shrublands continued 6-10 years post-fire. A dense, low oak canopy continued to coalesce in sites subject to severe fire. The importance of resprouts in P. leiophylla regeneration accelerated because these plants outgrew competing oak resprouts. Topography and fire severity (dNBR) were important predictors of 2021 patterns of pine recruitment. NDVI added explanatory value to these models, suggesting its potential in tracking forest dynamics. Evapotranspiration did not add value, likely because ECOSTRESS' larger pixel sizes and moving pixel locations created excessive subpixel heterogeneity in this highly dissected landscape. These models suggest that P. engelmannii is more drought sensitive, was more negatively affected by drought and fire, and is more at risk to shifts in climate and wildfires than P. leiophylla.


Assuntos
Monitoramento Ambiental , Incêndios , Pinus , Tecnologia de Sensoriamento Remoto , Ecossistema , Florestas , Pinus/crescimento & desenvolvimento , Monitoramento Ambiental/métodos
2.
Ecol Evol ; 11(21): 14715-14732, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765136

RESUMO

AIM: Drastic changes in fire regimes are altering plant communities, inspiring ecologists to better understand the relationship between fire and plant species diversity. We examined the impact of a 90,000-ha wildfire on woody plant species diversity in an arid mountain range in southern Arizona, USA. We tested recent fire-diversity hypotheses by addressing the impacts on diversity of fire severity, fire variability, historical fire regimes, and topography. LOCATION: Chiricahua National Monument, Chiricahua Mountains, Arizona, USA, part of the Sky Islands of the US-Mexico borderlands. TAXON: Woody plant species. METHODS: We sampled woody plant diversity in 138 plots before (2002-2003) and after (2017-2018) the 2011 Horseshoe Two Fire in three vegetation types and across fire severity and topographic gradients. We calculated gamma, alpha, and beta diversity and examined changes over time in burned versus unburned plots and the shapes of the relationships of diversity with fire severity and topography. RESULTS: Alpha species richness declined, and beta and gamma diversity increased in burned but not unburned plots. Fire-induced enhancement of gamma diversity was confined to low fire severity plots. Alpha diversity did not exhibit a clear continuous relationship with fire severity. Beta diversity was enhanced by variation in fire severity among plots and increased with fire severity up to very high severity, where it declined slightly. MAIN CONCLUSIONS: The results reject the intermediate disturbance hypothesis for alpha diversity but weakly support it for gamma diversity. Spatial variation in fire severity promoted variation among plant assemblages, supporting the pyrodiversity hypothesis. Long-term drought probably amplified fire-driven diversity changes. Despite the apparent benign impact of the fire on diversity, the replacement of two large conifer species with a suite of drought-tolerant shrubs signals the potential loss of functional diversity, a pattern that may warrant restoration efforts to retain these important compositional elements.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30348870

RESUMO

Large vertebrates affect fire regimes in several ways: by consuming plant matter that would otherwise accumulate as fuel; by controlling and varying the density of vegetation; and by engineering the soil and litter layer. These processes can regulate the frequency, intensity and extent of fire. The evidence for these effects is strongest in environments with intermediate rainfall, warm temperatures and graminoid-dominated ground vegetation. Probably, extinction of Quaternary megafauna triggered increased biomass burning in many such environments. Recent and continuing declines of large vertebrates are likely to be significant contributors to changes in fire regimes and vegetation that are currently being experienced in many parts of the world. To date, rewilding projects that aim to restore large herbivores have paid little attention to the value of large animals in moderating fire regimes. Rewilding potentially offers a powerful tool for managing the risks of wildfire and its impacts on natural and human values.This article is part of the theme issue 'Trophic rewilding: consequences for ecosystems under global change'.


Assuntos
Biomassa , Mudança Climática , Conservação dos Recursos Naturais , Incêndios , Herbivoria , Vertebrados/fisiologia , Animais , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA