Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5389, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508101

RESUMO

Conditional overexpression of histone reader Tripartite motif containing protein 24 (TRIM24) in mouse mammary epithelia (Trim24COE) drives spontaneous development of mammary carcinosarcoma tumors, lacking ER, PR and HER2. Human carcinosarcomas or metaplastic breast cancers (MpBC) are a rare, chemorefractory subclass of triple-negative breast cancers (TNBC). Comparison of Trim24COE metaplastic carcinosarcoma morphology, TRIM24 protein levels and a derived Trim24COE gene signature reveals strong correlation with human MpBC tumors and MpBC patient-derived xenograft (PDX) models. Global and single-cell tumor profiling reveal Met as a direct oncogenic target of TRIM24, leading to aberrant PI3K/mTOR activation. Here, we find that pharmacological inhibition of these pathways in primary Trim24COE tumor cells and TRIM24-PROTAC treatment of MpBC TNBC PDX tumorspheres decreased cellular viability, suggesting potential in therapeutically targeting TRIM24 and its regulated pathways in TRIM24-expressing TNBC.


Assuntos
Carcinossarcoma/genética , Proteínas de Transporte/genética , Neoplasias Mamárias Experimentais/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/genética , Animais , Mama/patologia , Carcinossarcoma/patologia , Proteínas de Transporte/metabolismo , Ensaios Clínicos como Assunto , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-met/genética , RNA-Seq , Análise de Célula Única , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Sequenciamento Completo do Genoma , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Front Mol Neurosci ; 14: 684714, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34531721

RESUMO

Peripheral neuropathy, which is the result of nerve damage from lesions or disease, continues to be a major health concern due to the common manifestation of neuropathic pain. Most investigations into the development of peripheral neuropathy focus on key players such as voltage-gated ion channels or glutamate receptors. However, emerging evidence points to mitochondrial dysfunction as a major player in the development of peripheral neuropathy and resulting neuropathic pain. Mitochondrial dysfunction in neuropathy includes altered mitochondrial transport, mitochondrial metabolism, as well as mitochondrial dynamics. The mechanisms that lead to mitochondrial dysfunction in peripheral neuropathy are poorly understood, however, the Class IIb histone deacetylase (HDAC6), may play an important role in the process. HDAC6 is a key regulator in multiple mechanisms of mitochondrial dynamics and may contribute to mitochondrial dysregulation in peripheral neuropathy. Accumulating evidence shows that HDAC6 inhibition is strongly associated with alleviating peripheral neuropathy and neuropathic pain, as well as mitochondrial dysfunction, in in vivo and in vitro models of peripheral neuropathy. Thus, HDAC6 inhibitors are being investigated as potential therapies for multiple peripheral neuropathic disorders. Here, we review emerging studies and integrate recent advances in understanding the unique connection between peripheral neuropathy and mitochondrial dysfunction through HDAC6-mediated interactions.

3.
Development ; 145(8)2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29654218

RESUMO

Most human cancers harbor mutations in the gene encoding p53. As a result, research on p53 in the past few decades has focused primarily on its role as a tumor suppressor. One consequence of this focus is that the functions of p53 in development have largely been ignored. However, recent advances, such as the genomic profiling of embryonic stem cells, have uncovered the significance and mechanisms of p53 functions in mammalian cell differentiation and development. As we review here, these recent findings reveal roles that complement the well-established roles for p53 in tumor suppression.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Genes p53 , Proteína Supressora de Tumor p53/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Knockout , Neoplasias/genética , Neoplasias/patologia , Neoplasias/fisiopatologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
4.
Drug Discov Today Technol ; 19: 57-63, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27769359

RESUMO

Tripartite Motif-containing protein 24 (TRIM24) functions as an E3 ligase targeting p53 for ubiquitination, a histone 'reader' that interacts with a specific signature of histone post-translational modifications and a co-regulator of nuclear receptor-regulated transcription. Although mouse models of Trim24 depletion suggest that TRIM24 may be a liver-specific tumor suppressor, several studies show that human TRIM24 is an oncogene when aberrantly over expressed. This review focuses on the mechanisms of TRIM24 functions in oncogenesis and metabolic reprogramming, which underlie recent interest in therapeutic targeting of aberrant TRIM24 in human cancers.


Assuntos
Proteínas de Transporte/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Proteínas Oncogênicas/metabolismo , Animais , Cromatina/metabolismo , Humanos , Neoplasias/metabolismo
5.
Nucleic Acids Res ; 44(8): 3659-74, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-26762983

RESUMO

Trimethylated histone H3 lysine 27 (H3K27me3) is linked to gene silencing, whereas H3K4me3 is associated with gene activation. These two marks frequently co-occupy gene promoters, forming bivalent domains. Bivalency signifies repressed but activatable states of gene expression and can be resolved to active, H3K4me3-prevalent states during multiple cellular processes, including differentiation, development and epithelial mesenchymal transition. However, the molecular mechanism underlying bivalency resolution remains largely unknown. Here, we show that the H3K27 demethylase UTX (also called KDM6A) is required for the resolution and activation of numerous retinoic acid (RA)-inducible bivalent genes during the RA-driven differentiation of mouse embryonic stem cells (ESCs). Notably, UTX loss in mouse ESCs inhibited the RA-driven bivalency resolution and activation of most developmentally critical homeobox (Hox) a-d genes. The UTX-mediated resolution and activation of many bivalent Hox genes during mouse ESC differentiation were recapitulated during RA-driven differentiation of human NT2/D1 embryonal carcinoma cells. In support of the importance of UTX in bivalency resolution, Utx-null mouse ESCs and UTX-depleted NT2/D1 cells displayed defects in RA-driven cellular differentiation. Our results define UTX as a bivalency-resolving histone modifier necessary for stem cell differentiation.


Assuntos
Diferenciação Celular/genética , Histona Desmetilases/fisiologia , Proteínas Nucleares/fisiologia , Regiões Promotoras Genéticas , Ativação Transcricional , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Genes Homeobox , Histona Desmetilases/metabolismo , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Tretinoína/farmacologia
6.
Stem Cells ; 34(5): 1284-96, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26731713

RESUMO

MicroRNA expression profiling in human liver progenitor cells following hepatocytic differentiation identified miR-122 and miR-194 as the microRNAs most strongly upregulated during hepatocytic differentiation of progenitor cells. MiR-194 was also highly upregulated following hepatocytic differentiation of human embryonic stem cells (hESCs). Overexpression of miR-194 in progenitor cells accelerated their differentiation into hepatocytes, as measured by morphological features such as canaliculi and expression of hepatocytic markers. Overexpression of miR-194 in hESCs induced their spontaneous differentiation, a phenotype accompanied with accelerated loss of the pluripotent factors OCT4 and NANOG and decrease in mesoderm marker HAND1 expression. We then identified YAP1 as a direct target of miR-194. Inhibition of YAP1 strongly induced hepatocytic differentiation of progenitor cells and YAP1 overexpression reversed the miR-194-induced hepatocytic differentiation of progenitor cells. In conclusion, we identified miR-194 as a potent inducer of hepatocytic differentiation of progenitor cells and further identified YAP1 as a mediator of miR-194's effects on hepatocytic differentiation and liver progenitor cell fate. Stem Cells 2016;34:1284-1296.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Diferenciação Celular/genética , Hepatócitos/citologia , Hepatócitos/metabolismo , MicroRNAs/metabolismo , Fosfoproteínas/metabolismo , Sequência de Bases , Linhagem Celular , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Fígado/citologia , MicroRNAs/genética , Fatores de Transcrição , Regulação para Cima/genética , Proteínas de Sinalização YAP
7.
Epigenetics ; 10(11): 1006-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26440216

RESUMO

Oxidation of 5-methylcytosine by TET family proteins can induce DNA replication-dependent (passive) DNA demethylation and base excision repair (BER)-based (active) DNA demethylation. The balance of active vs. passive TET-induced demethylation remains incompletely determined. In the context of large scale DNA demethylation, active demethylation may require massive induction of the DNA repair machinery and thus compromise genome stability. To study this issue, we constructed a tetracycline-controlled TET-induced global DNA demethylation system in HEK293T cells. Upon TET overexpression, we observed induction of DNA damage and activation of a DNA damage response; however, BER genes are not upregulated to promote DNA repair. Depletion of TDG (thymine DNA glycosylase) or APEX1 (apurinic/apyrimidinic endonuclease 1), two key BER enzymes, enhances rather than impairs global DNA demethylation, which can be explained by stimulated proliferation. By contrast, growth arrest dramatically blocks TET-induced global DNA demethylation. Thus, in the context of TET-induction in HEK293T cells, the DNA replication-dependent passive mechanism functions as the predominant pathway for global DNA demethylation. In the same context, BER-based active demethylation is markedly restricted by limited BER upregulation, thus potentially preventing a disastrous DNA damage response to extensive active DNA demethylation.


Assuntos
Metilação de DNA , Reparo do DNA , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proliferação de Células , Dano ao DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/deficiência , Células HEK293 , Humanos , Timina DNA Glicosilase/deficiência
8.
J Hepatol ; 62(2): 371-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25281858

RESUMO

BACKGROUND & AIMS: Aberrantly high expression of TRIM24 occurs in human cancers, including hepatocellular carcinoma. In contrast, TRIM24 in the mouse is reportedly a liver-specific tumour suppressor. To address this dichotomy and to uncover direct regulatory functions of TRIM24 in vivo, we developed a new mouse model that lacks expression of all Trim24 isoforms, as the previous model expressed normal levels of Trim24 lacking only exon 4. METHODS: To produce germline-deleted Trim24(dlE1) mice, deletion of the promoter and exon 1 of Trim24 was induced in Trim24(LoxP) mice by crossing with a zona pellucida 3-Cre line for global deletion. Liver-specific deletion (Trim24(hep)) was achieved by crossing with an albumin-Cre line. Phenotypic analyses were complemented by protein, gene-specific and global RNA expression analyses and quantitative chromatin immunoprecipitation. RESULTS: Global loss of Trim24 disrupted hepatic homeostasis in 100% of mice with highly significant, decreased expression of oxidation/reduction, steroid, fatty acid, and lipid metabolism genes, as well as increased expression of genes involved in unfolded protein response, endoplasmic reticulum stress and cell cycle pathways. Trim24(dlE1/dlE1) mice have markedly depleted visceral fat and, like Trim24(hep/hep) mice, spontaneously develop hepatic lipid-filled lesions, steatosis, hepatic injury, fibrosis and hepatocellular carcinoma. CONCLUSIONS: TRIM24, an epigenetic co-regulator of transcription, directly and indirectly represses hepatic lipid accumulation, inflammation, fibrosis and damage in the murine liver. Complete loss of Trim24 offers a model of human non-alcoholic fatty liver disease, steatosis, fibrosis and development of hepatocellular carcinoma in the absence of high-fat diet or obesity.


Assuntos
Carcinoma Hepatocelular/genética , Fígado Gorduroso/genética , Regulação Neoplásica da Expressão Gênica , Lipídeos/análise , Neoplasias Hepáticas Experimentais/genética , Proteínas Nucleares/genética , RNA Neoplásico/genética , Fatores de Transcrição/genética , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Progressão da Doença , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Knockout , Proteínas Nucleares/biossíntese , Reação em Cadeia da Polimerase , Fatores de Transcrição/biossíntese
9.
Nucleic Acids Res ; 42(11): 6956-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24875481

RESUMO

TET1 is a 5-methylcytosine dioxygenase and its DNA demethylating activity has been implicated in pluripotency and reprogramming. However, the precise role of TET1 in DNA methylation regulation outside of developmental reprogramming is still unclear. Here, we show that overexpression of the TET1 catalytic domain but not full length TET1 (TET1-FL) induces massive global DNA demethylation in differentiated cells. Genome-wide mapping reveals that 5-hydroxymethylcytosine production by TET1-FL is inhibited as DNA methylation increases, which can be explained by the preferential binding of TET1-FL to unmethylated CpG islands (CGIs) through its CXXC domain. TET1-FL specifically accumulates 5-hydroxymethylcytosine at the edges of hypomethylated CGIs, while knockdown of endogenous TET1 induces methylation spreading from methylated edges into hypomethylated CGIs. We also found that gene expression changes after TET1-FL overexpression are relatively small and independent of its dioxygenase function. Thus, our results identify TET1 as a maintenance DNA demethylase that does not purposely decrease methylation levels, but specifically prevents aberrant methylation spreading into CGIs in differentiated cells.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/análogos & derivados , Domínio Catalítico , Diferenciação Celular/genética , Ilhas de CpG , Citosina/análogos & derivados , Citosina/análise , Citosina/metabolismo , Proteínas de Ligação a DNA/química , Dioxigenases/química , Células HEK293 , Humanos , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas/química , Transcrição Gênica
10.
Nucleic Acids Res ; 42(1): 205-23, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24078252

RESUMO

How tumor suppressor p53 selectively responds to specific signals, especially in normal cells, is poorly understood. We performed genome-wide profiling of p53 chromatin interactions and target gene expression in human embryonic stem cells (hESCs) in response to early differentiation, induced by retinoic acid, versus DNA damage, caused by adriamycin. Most p53-binding sites are unique to each state and define stimulus-specific p53 responses in hESCs. Differentiation-activated p53 targets include many developmental transcription factors and, in pluripotent hESCs, are bound by OCT4 and NANOG at chromatin enriched in both H3K27me3 and H3K4me3. Activation of these genes occurs with recruitment of p53 and H3K27me3-specific demethylases, UTX and JMJD3, to chromatin. In contrast, genes associated with cell migration and motility are bound by p53 specifically after DNA damage. Surveillance functions of p53 in cell death and cell cycle regulation are conserved in both DNA damage and differentiation. Comparative genomic analysis of p53-targets in mouse and human ESCs supports an inter-species divergence in p53 regulatory functions during evolution. Our findings expand the registry of p53-regulated genes to define p53-regulated opposition to pluripotency during early differentiation, a process highly distinct from stress-induced p53 response in hESCs.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Dano ao DNA , Células-Tronco Embrionárias/citologia , Genoma Humano , Histona Desmetilases/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Fatores de Transcrição/metabolismo
12.
Hepatology ; 57(5): 2004-13, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23300120

RESUMO

UNLABELLED: Functions of p53 during mitosis reportedly include prevention of polyploidy and transmission of aberrant chromosomes. However, whether p53 plays these roles during genomic surveillance in vivo and, if so, whether this is done via direct or indirect means remain unknown. The ability of normal, mature hepatocytes to respond to stimuli, reenter the cell cycle, and regenerate liver mass offers an ideal setting to assess mitosis in vivo. In quiescent liver, normally high ploidy levels in adult mice increased with loss of p53. Following partial hepatectomy, p53(-/-) hepatocytes exhibited early entry into the cell cycle and prolonged proliferation with an increased number of polyploid mitoses. Ploidy levels increased during regeneration of both wild-type (WT) and p53(-/-) hepatocytes, but only WT hepatocytes were able to dynamically resolve ploidy levels and return to normal by the end of regeneration. We identified multiple cell cycle and mitotic regulators, including Foxm1, Aurka, Lats2, Plk2, and Plk4, as directly regulated by chromatin interactions of p53 in vivo. Over a time course of regeneration, direct and indirect regulation of expression by p53 is mediated in a gene-specific manner. CONCLUSION: Our results show that p53 plays a role in mitotic fidelity and ploidy resolution in hepatocytes of normal and regenerative liver.


Assuntos
Fígado/patologia , Mitose/fisiologia , Ploidias , Transcrição Gênica/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Ciclo Celular/fisiologia , Proliferação de Células , Hepatectomia , Fígado/fisiologia , Fígado/cirurgia , Regeneração Hepática/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
14.
PLoS Biol ; 10(2): e1001268, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22389628

RESUMO

Multiple studies show that tumor suppressor p53 is a barrier to dedifferentiation; whether this is strictly due to repression of proliferation remains a subject of debate. Here, we show that p53 plays an active role in promoting differentiation of human embryonic stem cells (hESCs) and opposing self-renewal by regulation of specific target genes and microRNAs. In contrast to mouse embryonic stem cells, p53 in hESCs is maintained at low levels in the nucleus, albeit in a deacetylated, inactive state. In response to retinoic acid, CBP/p300 acetylates p53 at lysine 373, which leads to dissociation from E3-ubiquitin ligases HDM2 and TRIM24. Stabilized p53 binds CDKN1A to establish a G(1) phase of cell cycle without activation of cell death pathways. In parallel, p53 activates expression of miR-34a and miR-145, which in turn repress stem cell factors OCT4, KLF4, LIN28A, and SOX2 and prevent backsliding to pluripotency. Induction of p53 levels is a key step: RNA-interference-mediated knockdown of p53 delays differentiation, whereas depletion of negative regulators of p53 or ectopic expression of p53 yields spontaneous differentiation of hESCs, independently of retinoic acid. Ectopic expression of p53R175H, a mutated form of p53 that does not bind DNA or regulate transcription, failed to induce differentiation. These studies underscore the importance of a p53-regulated network in determining the human stem cell state.


Assuntos
Ciclo Celular , Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Acetilação , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Apoptose , Sequência de Bases , Sítios de Ligação , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , MicroRNAs/genética , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Transcrição Gênica , Tretinoína/fisiologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
J Cell Biochem ; 113(7): 2179-84, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22345090

RESUMO

Numerous genome wide profiles of gene expression changes in human hepatocellular carcinoma (HCC), compared to normal liver tissue, have been reported. Hierarchical clustering of these data reveal distinct patterns, which underscore conservation between human disease and mouse models of HCC, as well as suggest specific classification of subtypes within the heterogeneous disease of HCC. Global profiling of gene expression in mouse liver, challenged by partial hepatectomy to regenerate, reveals alterations in gene expression that occur in response to acute injury, inflammation, and re-entry into cell cycle. When we integrated datasets of gene expression changes in mouse models of HCC and those that are altered at specific times of liver regeneration, we saw shared, conserved alterations in gene expression within specific biological pathways, both up-regulated, for example, cell cycle, cell death, and cellular development, or down-regulated, for example, vitamin and mineral metabolism, lipid metabolism, and molecular transport. Additional molecular mechanisms shared by liver regeneration and HCC, as yet undiscovered, may have important implications in tumor development and recurrence. These comparisons may offer a way to judge how liver resection, in the treatment of HCC, introduces challenges to care of the disease. Further, uncovering the pathways conserved in inflammatory response, hypertrophy, proliferation, and architectural remodeling of the liver, which are shared in liver regeneration and HCC, versus those specific to tumor development and progression in HCC, may reveal new biomarkers or potential therapeutic targets in HCC.


Assuntos
Carcinoma Hepatocelular/genética , Hepatopatias/genética , Neoplasias Hepáticas/genética , Regeneração Hepática/genética , Animais , Apoptose/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Humanos , Fígado/citologia , Fígado/metabolismo , Fígado/patologia , Hepatopatias/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos
17.
Mol Cell ; 43(5): 697-8, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21884971

RESUMO

In this issue of Molecular Cell, Wu et al. (2011) reveal an essential role for a chromatin modifier, histone deacetylase 3 (HDAC3), in hypoxia-induced epithelial-mesenchymal transition (EMT); HIF-activated HDAC3 integrates with WDR5 to impose chromatin modifications that culminate in EMT.

18.
Mol Cell Biol ; 31(15): 3126-35, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21628526

RESUMO

Posttranslational modifications of histone proteins play important roles in the modulation of gene expression. The Saccharomyces cerevisiae (yeast) 2-MDa SAGA (Spt-Ada-Gcn5) complex, a well-studied multisubunit histone modifier, regulates gene expression through Gcn5-mediated histone acetylation and Ubp8-mediated histone deubiquitination. Using a proteomics approach, we determined that the SAGA complex also deubiquitinates nonhistone proteins, including Snf1, an AMP-activated kinase. Ubp8-mediated deubiquitination of Snf1 affects the stability and phosphorylation state of Snf1, thereby affecting Snf1 kinase activity. Others have reported that Gal83 is phosphorylated by Snf1, and we found that deletion of UBP8 causes decreased phosphorylation of Gal83, which is consistent with the effects of Ubp8 loss on Snf1 kinase functions. Overall, our data indicate that SAGA modulates the posttranslational modifications of Snf1 in order to fine-tune gene expression levels.


Assuntos
Endopeptidases/metabolismo , Histonas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Proteínas Quinases Ativadas por AMP , Acetilação , Endopeptidases/genética , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Histonas/biossíntese , Histonas/metabolismo , Fosforilação , Plasmídeos , Processamento de Proteína Pós-Traducional , Proteômica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação
19.
Dev Biol ; 349(1): 90-9, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20969844

RESUMO

As neuronal progenitors differentiate into neurons, they acquire a unique set of transcription factors. The transcriptional repressor REST prevents progenitors from undergoing differentiation. Notably, REST binding sites are often associated with retinal ganglion cell (RGC) genes whose expression in the retina is positively controlled by Atoh7, a factor essential for RGC formation. The key regulators that enable a retinal progenitor cell (RPC) to commit to an RGC fate have not been identified. We show here that REST suppresses RGC gene expression in RPCs. REST inactivation causes aberrant expression of RGC transcription factors in proliferating RPCs, independent of Atoh7, resulting in increased RGC formation. Strikingly, inactivating REST in Atoh7-null retinas restores transcription factor expression, which partially activates downstream RGC genes but is insufficient to prevent RGC loss. Our results demonstrate an Atoh7-independent program for initial activation of RGC genes and suggest a novel role for REST in preventing premature expression in RPCs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/metabolismo , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Proteínas Repressoras/genética , Fator de Transcrição Brn-3B/genética , Fator de Transcrição Brn-3B/metabolismo
20.
Int J Biochem Cell Biol ; 43(2): 189-97, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20307684

RESUMO

An increasing demand for new strategies in cancer prevention and regenerative medicine requires a better understanding of molecular mechanisms that control cell proliferation in tissue-specific manner. Regenerating liver is a unique model allowing use of biochemical, genetic, and engineering tools to uncover molecular mechanisms and improve treatment of hepatic cancers, liver failure, and fibrotic disease. Molecular mechanisms of liver regeneration involve extra- and intracellular factors to activate transcription of genes normally silenced in quiescent liver. While many upstream signaling pathways of the regenerating liver have been extensively studied, our knowledge of the downstream effectors, transcription factors (TFs), remains limited. This review describes consecutive engagement of pre-existing and de novo synthesized TFs, as cascades that regulate expression of growth-related and metabolic genes during liver regeneration after partial hepatectomy in mice. Several previously recognized regulators of regenerating liver are described in the light of recently identified co-activator and co-repressor complexes that interact with primary DNA-binding TFs. Published results of gene expression and chromatin immunoprecipitation analyses, as well as studies of transgenic mouse models, are used to emphasize new potential regulators of transcription during liver regeneration. Finally, a more detailed description of newly identified transcriptional regulators of liver regeneration illustrates the tightly regulated balance of proliferative and metabolic responses to partial hepatectomy.


Assuntos
Regulação da Expressão Gênica , Regeneração Hepática , Animais , Comunicação Celular , Ciclo Celular , Proliferação de Células , Hepatectomia , Hepatócitos/fisiologia , Humanos , Camundongos , Receptores Citoplasmáticos e Nucleares/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA