Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 699: 145-150, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30742935

RESUMO

Inhibitory circuits in the auditory brainstem undergo multiple postnatal changes that are both activity-dependent and activity-independent. We tested to see if the shift from GABA- to glycinergic transmission, which occurs in the rat medial nucleus of the trapezoid body (MNTB) around the onset of hearing, depends on sound-evoked neuronal activity. We prevented the activity by bilateral cochlear ablations in early postnatal rats and studied ionotropic GABA and glycine receptors in MNTB neurons after hearing onset. The removal of the cochlea decreased responses of GABAA and glycine receptors to exogenous agonists as well as the amplitudes of inhibitory postsynaptic currents. The reduction was accompanied by a decrease in the number of glycine receptor- or vesicular GABA transporter-immunopositive puncta. Furthermore, the ablations markedly affected the switch in presynaptic GABAA to glycine receptors. The increase in the expression of postsynaptic glycine receptors and the shift in inhibitory transmitters were not prevented. The results suggest that inhibitory transmission in the MNTB is subject to multiple developmental signals and support the idea that auditory experience plays a role in the maturation of the brainstem glycinergic circuits.


Assuntos
Técnicas de Ablação , Cóclea/fisiopatologia , Cóclea/cirurgia , Inibição Neural/fisiologia , Transmissão Sináptica , Corpo Trapezoide/fisiologia , Animais , Animais Recém-Nascidos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Agonistas de Receptores de GABA-A/farmacologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Inibição Neural/efeitos dos fármacos , Ratos , Receptores de GABA-A/fisiologia , Receptores de Glicina/agonistas , Receptores de Glicina/metabolismo , Receptores de Glicina/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
2.
Eur J Neurosci ; 40(11): 3674-83, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25224160

RESUMO

The structure and function of the auditory system may be influenced by acoustic stimulation, especially during the early postnatal period. This study explores the effects of an acoustically enriched environment applied during the third and fourth week of life on the responsiveness of inferior colliculus neurons in rats. The enrichment comprised a spectrally and temporally modulated complex sound reinforced with several target acoustic stimuli, one of which triggered a reward release. The exposure permanently influenced neuronal representation of the sound frequency and intensity, resulting in lower excitatory thresholds at neuronal characteristic frequency, an increased frequency selectivity, larger response magnitudes, steeper rate-intensity functions and an increased spontaneous activity. The effect was general and non-specific, spanning the entire hearing range - no changes specific to the frequency band of the target stimuli were found. The alterations depended on the activity of animals during the enrichment - a higher activity of rats in the stimulus-reward paradigm led to more profound changes compared with the treatment when the stimulus-reward paradigm was not used. Furthermore, the exposure in early life led to permanent changes in response parameters, whereas the application of the same environment in adulthood influenced only a subset of the examined parameters and had only a temporary effect. These findings indicate that a rich and stimulating acoustic environment during early development, particularly when reinforced by positive feedback, may permanently affect signal processing in the subcortical auditory nuclei, including the excitatory thresholds of neurons and their frequency and intensity resolution.


Assuntos
Percepção Auditiva/fisiologia , Colículos Inferiores/crescimento & desenvolvimento , Colículos Inferiores/fisiologia , Neurônios/fisiologia , Recompensa , Estimulação Acústica/métodos , Potenciais de Ação , Animais , Meio Ambiente , Feminino , Microeletrodos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA