Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38844203

RESUMO

Although our current knowledge of the molecular crosstalk between the ER stress, the unfolded protein response (UPR), and lipid homeostasis remains limited, there is increasing evidence that dysregulation of either protein or lipid homeostasis profoundly affects the other. Most research regarding UPR signaling in human diseases has focused on the causes and consequences of disrupted protein folding. The UPR itself consists of very complex pathways that function to not only maintain protein homeostasis, but just as importantly, modulate lipid biogenesis to allow the ER to adjust and promote cell survival. Lipid dysregulation is known to activate many aspects of the UPR, but the complexity of this crosstalk remains a major research barrier. ER lipid disequilibrium and lipotoxicity are known to be important contributors to numerous human pathologies, including insulin resistance, liver disease, cardiovascular diseases, neurodegenerative diseases, and cancer. Despite their medical significance and continuous research, however, the molecular mechanisms that modulate lipid synthesis during ER stress conditions, and their impact on cell fate decisions, remain poorly understood. Here we summarize the current view on crosstalk and connections between altered lipid metabolism, ER stress, and the UPR.

2.
Eur J Cell Biol ; 103(2): 151386, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38262137

RESUMO

Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.

3.
Cell Commun Signal ; 21(1): 322, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946177

RESUMO

The unfolded protein response is a survival signaling pathway that is induced during various types of ER stress. Here, we determine IRE1's role in miRNA regulation during ER stress. During induction of ER stress in human bronchial epithelial cells, we utilized next generation sequencing to demonstrate that pre-miR-301a and pre-miR-106b were significantly increased in the presence of an IRE1 inhibitor. Conversely, using nuclear-cytosolic fractionation on ER stressed cells, we found that these pre-miRNAs were decreased in the nuclear fractions without the IRE1 inhibitor. We also found that miR-301a-3p targets the proapoptotic UPR factor growth arrest and DNA-damage-inducible alpha (GADD45A). Inhibiting miR-301a-3p levels or blocking its predicted miRNA binding site in GADD45A's 3' UTR with a target protector increased GADD45A mRNA expression. Furthermore, an elevation of XBP1s expression had no effect on GADD45A mRNA expression. We also demonstrate that the introduction of a target protector for the miR-301a-3p binding site in GADD45A mRNA during ER stress promoted cell death in the airway epithelial cells. In summary, these results indicate that IRE1's endonuclease activity is a two-edged sword that can splice XBP1 mRNA to stabilize survival or degrade pre-miR-301a to elevate GADD45A mRNA expression to lead to apoptosis. Video Abstract.


Assuntos
MicroRNAs , Humanos , Apoptose/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , Regulação para Cima
4.
Sci Rep ; 13(1): 15280, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714912

RESUMO

Pulmonary arterial hypertension is a rare but life-threatening and clinically heterogeneous disease. The diagnostic schedule of this disorder is complex, and no specific indicator of the arterial etiology has been explored. In this study, untargeted plasma metabolomics was applied to evaluate the metabolic fingerprints of pulmonary arterial hypertension patients. Plasma samples were prepared using a new approach, which applies proteinase K during the sample preparation procedure to increase the metabolite coverage. The metabolic fingerprints were determined via LC-MS and subsequently analyzed with the use of both uni- and multivariate statistics. A total of 21 metabolites were discovered to be significantly altered in pulmonary arterial hypertensive patients. The metabolites were mainly related to the phospholipid metabolic pathways. In this study, decreases were found in the phosphatidylcholines (PCs) [PC(32:0), PC(40:7), PC(42:7)], phosphatidylethanolamine PE(18:0/18:2), lysophosphatidylethanolamines (LPEs) [LPE(22:6), LPE(18:2), LPE(18:0), LPE(20:4), LPE(20:1), LPE(20:0)], lysophosphatidylcholine LPC(20:4) and lysophosphatidylserine LPS(19:0), as well as increase of sphingomyelin SM(36:2), in the plasma samples of pulmonary arterial hypertensive patients in comparison to the control group. Besides their function as components of the biological membranes, these metabolites are also involved in the intracellular signaling pathways that are related to cell proliferation and apoptosis. The results obtained during this study confirm the potential of (untargeted) metabolomics to identify the molecular characteristics of the pathophysiology of pulmonary arterial hypertension. The clinical relevance of this study constitutes the selection of a metabolic panel that can potentially detect and properly diagnose the disease.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Endopeptidase K , Hipertensão Pulmonar Primária Familiar , Metabolômica , Artéria Pulmonar
5.
Molecules ; 28(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764516

RESUMO

Ubiquitin, a small protein, is well known for tagging target proteins through a cascade of enzymatic reactions that lead to protein degradation. The ubiquitin tag, apart from its signaling role, is paramount in destabilizing the modified protein. Here, we explore the complex role of ubiquitin-mediated protein destabilization in the intricate proteolysis process by the 26S proteasome. In addition, the significance of the so-called ubiquitin-independent pathway and the role of the 20S proteasome are considered. Next, we discuss the ubiquitin-proteasome system's interplay with pathogenic microorganisms and how the microorganisms manipulate this system to establish infection by a range of elaborate pathways to evade or counteract host responses. Finally, we focus on the mechanisms that rely either on (i) hijacking the host and on delivering pathogenic E3 ligases and deubiquitinases that promote the degradation of host proteins, or (ii) counteracting host responses through the stabilization of pathogenic effector proteins.

6.
J Cell Commun Signal ; 17(4): 1145-1161, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37721642

RESUMO

The unfolded protein response (UPR) is a cellular mechanism that protects cells during stress conditions in which there is an accumulation of misfolded proteins in the endoplasmic reticulum (ER). UPR activates three signaling pathways that function to alleviate stress conditions and promote cellular homeostasis and cell survival. During unmitigated stress conditions, however, UPR activation signaling changes to promote cell death through apoptosis. Interestingly, cancer cells take advantage of this pathway to facilitate survival and avoid apoptosis even during prolonged cell stress conditions. Here, we discuss different signaling pathways associated with UPR and focus specifically on one of the ER signaling pathways activated during UPR, inositol-requiring enzyme 1α (IRE1). The rationale is that the IRE1 pathway is associated with cell fate decisions and recognized as a promising target for cancer therapeutics. Here we discuss IRE1 inhibitors and how they might prove to be an effective cancer therapeutic.

7.
Antioxidants (Basel) ; 12(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627643

RESUMO

Efficient brain function requires as much as 20% of the total oxygen intake to support normal neuronal cell function. This level of oxygen usage, however, leads to the generation of free radicals, and thus can lead to oxidative stress and potentially to age-related cognitive decay and even neurodegenerative diseases. The regulation of this system requires a complex monitoring network to maintain proper oxygen homeostasis. Furthermore, the high content of mitochondria in the brain has elevated glucose demands, and thus requires a normal redox balance. Maintaining this is mediated by adaptive stress response pathways that permit cells to survive oxidative stress and to minimize cellular damage. These stress pathways rely on the proper function of the endoplasmic reticulum (ER) and the activation of the unfolded protein response (UPR), a cellular pathway responsible for normal ER function and cell survival. Interestingly, the UPR has two opposing signaling pathways, one that promotes cell survival and one that induces apoptosis. In this narrative review, we discuss the opposing roles of the UPR signaling pathways and how a better understanding of these stress pathways could potentially allow for the development of effective strategies to prevent age-related cognitive decay as well as treat neurodegenerative diseases.

8.
Cancers (Basel) ; 15(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37296866

RESUMO

MicroRNAs (miRNAs) play a critical role in the regulation of mRNA stability and translation. In spite of our present knowledge on the mechanisms of mRNA regulation by miRNAs, the utilization and translation of these ncRNAs into clinical applications have been problematic. Using hsa-miR-429 as an example, we discuss the limitations encountered in the development of efficient miRNA-related therapies and diagnostic approaches. The miR-200 family members, which include hsa-miR-429, have been shown to be dysregulated in different types of cancer. Although these miR-200 family members have been shown to function in suppressing epithelial-to-mesenchymal transition, tumor metastasis, and chemoresistance, the experimental results have often been contradictory. These complications involve not only the complex networks involving these noncoding RNAs, but also the problem of identifying false positives. To overcome these limitations, a more comprehensive research strategy is needed to increase our understanding of the mechanisms underlying their biological role in mRNA regulation. Here, we provide a literature analysis of the verified hsa-miR-429 targets in various human research models. A meta-analysis of this work is presented to provide better insights into the role of hsa-miR-429 in cancer diagnosis and any potential therapeutic approach.

9.
Gene ; 868: 147376, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934786

RESUMO

The cellular adaptation to hypoxia is regulated by hypoxia inducible factors: HIF-1 and HIF-2. HIF-1 mediates response to acute hypoxia, whereas HIF-2 allows adaptation to chronic oxygen deprivation. The hypoxic transition from HIF-1 to HIF-2 is possible due to the low stability of HIF-1α subunit transcript (HIF1A) and the stable mRNA of HIF-2α (EPAS1). Notably, although many micro-RNAs (miRNAs) that regulate endothelial HIF-1 levels during hypoxia have been identified, in case of HIF-2, no analogous ones have been found so far. In this work, using different methods, we tested 23 microRNA that were predicted to interact with the EPAS1 transcript (18 of which were induced during prolonged hypoxia), and we demonstrated that none of them were functional in vitro. This suggests that HIF-2α transcript is much less prone to miRNA-related destabilization during hypoxia.


Assuntos
MicroRNAs , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular , Células Endoteliais/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Oxigênio/metabolismo
10.
Transl Oncol ; 30: 101632, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36774883

RESUMO

BACKGROUND: Although imatinib is a well-established first-line drug for treating a vast majority of gastrointestinal stromal tumours (GIST), GISTs acquire secondary resistance during therapy. Multi-omics approaches provide an integrated perspective to empower the development of personalised therapies through a better understanding of functional biology underlying the disease and molecular-driven selection of the best-targeted individualised therapy. In this study, we applied integrative metabolomic and transcriptomic analyses to elucidate tumour biochemical processes affected by imatinib treatment. MATERIALS AND METHODS: A GIST xenograft mouse model was used in the study, including 10 mice treated with imatinib and 10 non-treated controls. Metabolites in tumour extracts were analysed using gas chromatography coupled with mass spectrometry (GC-MS). RNA sequencing was also performed on the samples subset (n=6). RESULTS: Metabolomic analysis revealed 21 differentiating metabolites, whereas next-generation RNA sequencing data analysis resulted in 531 differentially expressed genes. Imatinib significantly changed the profile of metabolites associated mainly with purine and pyrimidine metabolism, butanoate metabolism, as well as alanine, aspartate, and glutamate metabolism. The related changes in transcriptomic profiles included genes involved in kinase activity and immune responses, as well as supported its impact on the purine biosynthesis pathway. CONCLUSIONS: Our multi-omics study confirmed previously known pathways involved in imatinib anticancer activity as well as correlated imatinib-relevant downregulation of expression of purine biosynthesis pathway genes with the reduction of respectful metabolites. Furthermore, considering the importance of the purine biosynthesis pathway for cancer proliferation, we identified a potentially novel mechanism for the anti-tumour activity of imatinib. Based on the results, we hypothesise metabolic modulations aiming at the reduction in purine and pyrimidine pool may ensure higher imatinib efficacy or re-sensitise imatinib-resistant tumours.

11.
Cells ; 13(1)2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38201216

RESUMO

The genomic activity of 1,25(OH)2D3 is mediated by vitamin D receptor (VDR), whilst non-genomic is associated with protein disulfide isomerase family A member 3 (PDIA3). Interestingly, our recent studies documented that PDIA3 is also involved, directly or indirectly, in the modulation of genomic response to 1,25(OH)2D3. Moreover, PDIA3 was also shown to regulate cellular bioenergetics, possibly through the modulation of STAT signaling. Here, the role of VDR and PDIA3 proteins in membrane response to 1,25(OH)2D3 and calcium signaling was investigated in squamous cell carcinoma A431 cell line with or without the deletion of VDR and PDIA3 genes. Calcium influx was assayed by Fura-2AM or Fluo-4AM, while calcium-regulated element (NFAT) activation was measured using a dual luciferase assay. Further, the levels of proteins involved in membrane response to 1,25(OH)2D3 in A431 cell lines were analyzed via Western blot analysis. The deletion of either PDIA3 or VDR resulted in the decreased baseline levels of Ca2+ and its responsiveness to 1,25(OH)2D3; however, the effect was more pronounced in A431∆PDIA3. Furthermore, the knockout of either of these genes disrupted 1,25(OH)2D3-elicited membrane signaling. The data presented here indicated that the VDR is essential for the activation of calcium/calmodulin-dependent protein kinase II alpha (CAMK2A), while PDIA3 is required for 1,25(OH)2D3-induced calcium mobilization in A431 cells. Taken together, those results suggest that both VDR and PDIA3 are essential for non-genomic response to this powerful secosteroid.


Assuntos
Carcinoma de Células Escamosas , Isomerases de Dissulfetos de Proteínas , Vitamina D/análogos & derivados , Humanos , Isomerases de Dissulfetos de Proteínas/genética , Receptores de Calcitriol , Sinalização do Cálcio , Cálcio
12.
Cell Mol Biol Lett ; 27(1): 109, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482296

RESUMO

The hypoxia-inducible factors (HIF) are transcription factors that activate the adaptive hypoxic response when oxygen levels are low. The HIF transcriptional program increases oxygen delivery by inducing angiogenesis and by promoting metabolic reprograming that favors glycolysis. The two major HIFs, HIF-1 and HIF-2, mediate this response during prolonged hypoxia in an overlapping and sequential fashion that is referred to as the HIF switch. Both HIF proteins consist of an unstable alpha chain and a stable beta chain. The instability of the alpha chains is mediated by prolyl hydroxylase (PHD) activity during normoxic conditions, which leads to ubiquitination and proteasomal degradation of the alpha chains. During normoxic conditions, very little HIF-1 or HIF-2 alpha-beta dimers are present because of PHD activity. During hypoxia, however, PHD activity is suppressed, and HIF dimers are stable. Here we demonstrate that HIF-1 expression is maximal after 4 h of hypoxia in primary endothelial cells and then is dramatically reduced by 8 h. In contrast, HIF-2 is maximal at 8 h and remains elevated up to 24 h. There are differences in the HIF-1 and HIF-2 transcriptional profiles, and therefore understanding how the transition between them occurs is important and not clearly understood. Here we demonstrate that the HIF-1 to HIF-2 transition during prolonged hypoxia is mediated by two mechanisms: (1) the HIF-1 driven increase in the glycolytic pathways that reactivates PHD activity and (2) the much less stable mRNA levels of HIF-1α (HIF1A) compared to HIF-2α (EPAS1) mRNA. We also demonstrate that the alpha mRNA levels directly correlate to the relative alpha protein levels, and therefore to the more stable HIF-2 expression during prolonged hypoxia.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Hipóxia Celular , Células Endoteliais , Subunidade alfa do Fator 1 Induzível por Hipóxia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Oxigênio , Estabilidade de RNA , RNA Mensageiro/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
13.
Cell Mol Biol Lett ; 27(1): 104, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36434495

RESUMO

Pyrimidine 5'-nucleotidase deficiency is a rare erythrocyte enzymopathy. Here we report two cases of hemolytic anemia in brothers of Polish origin that are associated with a very rare mutation. Heterozygous deletion in the NT5C3A gene (c.444_446delGTT), inherited most likely from their asymptomatic mother, resulted in a single amino acid residue deletion (p.F149del) in cytosolic pyrimidine 5'-nucleotidase. However, only the mutated transcript was present in the reticulocyte transcriptome of both patients. Only residual activity of pyrimidine 5'-nucleotidase in the brothers' erythrocytes could be observed when compared with the controls, including their asymptomatic father and sister. Western blot showed no sign of the presence of 5'-nucleotidase protein in the erythrocytes of both studied patients. The 2.5-fold reduction of the purine/pyrimidine ratio observed only in the brothers' erythrocytes confirms the correlation of the results of molecular analysis, including whole-exome sequencing, with the phenotype of the pyrimidine 5'-nucleotidase deficiency. Altogether, our results may substantiate the hypothesis of the heterogeneity of the molecular basis of the defect involving both the mutation presented here and negative regulation of expression of the "normal" allele.


Assuntos
5'-Nucleotidase , Anemia Hemolítica , Masculino , Humanos , 5'-Nucleotidase/genética , Anemia Hemolítica/genética , Mutação/genética , Irmãos , Fenótipo
14.
Cancers (Basel) ; 14(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36230792

RESUMO

Despite our understanding of the unfolded protein response (UPR) pathways, the crosstalk between the UPR and the complex signaling networks that different cancers utilize for cell survival remains to be, in most cases, a difficult research barrier. A major problem is the constant variability of different cancer types and the different stages of cancer as well as the complexity of the tumor microenvironments (TME). This complexity often leads to apparently contradictory results. Furthermore, the majority of the studies that have been conducted have utilized two-dimensional in vitro cultures of cancer cells that were exposed to continuous hypoxia, and this approach may not mimic the dynamic and cyclic conditions that are found in solid tumors. Here, we discuss the role of intermittent hypoxia, one of inducers of the UPR in the cellular component of TME, and the way in which intermittent hypoxia induces high levels of reactive oxygen species, the activation of the UPR, and the way in which cancer cells modulate the UPR to aid in their survival. Although the past decade has resulted in defining the complex, novel non-coding RNA-based regulatory networks that modulate the means by which hypoxia influences the UPR, we are now just to beginning to understand some of the connections between hypoxia, the UPR, and the TME.

15.
FASEB J ; 36(7): e22412, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35713587

RESUMO

The cellular adaptive response to hypoxia relies on the expression of hypoxia-inducible factors (HIFs), HIF-1 and HIF-2. HIFs regulate global gene expression changes during hypoxia that are necessary for restoring oxygen homeostasis and promoting cell survival. In the early stages of hypoxia, HIF-1 is elevated, whereas at the later stages, HIF-2 becomes the predominant form. What governs the transition between the two HIFs (the HIF switch) and the role of miRNAs in this regulation are not completely clear. Genome-wide expression studies on the miRNA content of RNA-induced silencing complexes (RISC) in HUVECs exposed to hypoxia compared to the global miRNA-Seq analysis revealed very specific differences between these two populations. We analyzed the miRNA and mRNA composition of RISC at 2 h (mainly HIF-1 driven), 8 h (HIF-1 and HIF-2 elevated), and 16 h (mainly HIF-2 driven) in a gene ontology context. This allowed for determining the direct impact of the miRNAs in modulating the cellular signaling pathways involved in the hypoxic adaptive response. Our results indicate that the miRNA-mRNA RISC components control the adaptive responses, and this does not always rely on the miRNA transcriptional elevations during hypoxia. Furthermore, we demonstrate that the hypoxic levels of the vast majority of HIF-1-dependent miRNAs (including miR-210-3p) are also HIF-2 dependent and that HIF-2 governs the expression of 11 specific miRNAs. In summary, the switch from HIF-1 to HIF-2 during hypoxia provides an important level of miRNA-driven control in the adaptive pathways in endothelial cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , MicroRNAs , Complexo de Inativação Induzido por RNA , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular/genética , Células Endoteliais/metabolismo , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo
16.
J Cell Mol Med ; 26(14): 3950-3964, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35701366

RESUMO

The acridanone derivative 5-dimethylaminopropylamino-8-hydroxytriazoloacridinone (C-1305) has been described as a potent inhibitor of cancer cell growth. Its mechanism of action in in vitro conditions was attributed, among others, to its ability to bind and stabilize the microtubule network and subsequently exhibit its tumour-suppressive effects in synergy with paclitaxel (PTX). Therefore, the objective of the present study was to analyse the effects of the combined treatment of C-1305 and PTX in vivo. In addition, considering the results of previous genomic analyses, particular attention was given to the effects of this treatment on tumour angiogenesis. Treatment with C-1305 revealed antitumor effect in A549 lung cancer cells, and combined treatment with PTX showed tendency to anticancer activity in HCT116 colon cancer xenografts. It also improved tumour blood perfusion in both tumour models. The plasma level of CCL2 was increased and that of PDGF was decreased after combined treatment with C-1305 and PTX. The experimental results showed that the levels of FGF1, TGF-ß and Ang-4 decreased, whereas the levels of ERK1/2 and Akt phosphorylation increased in HCT116 tumour tissue following combined treatment with both drugs. The results of in vitro capillary-like structure formation assay demonstrated the inhibiting effect of C-1305 on this process. Although previous in vitro and in vivo studies suggested a positive effect of C-1305 on cancer cells, combined treatment of HCT116 human colon and A549 lung cancer cells with both PTX and C-1305 in vivo showed that the antitumor activity was restricted and associated with the modulation of tumour angiogenesis.


Assuntos
Neoplasias do Colo , Neoplasias Pulmonares , Acridinas , Apoptose , Neoplasias do Colo/tratamento farmacológico , Xenoenxertos , Humanos , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Triazóis
17.
EXCLI J ; 21: 454-469, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35391921

RESUMO

The adaptive response to hypoxia involves the transcriptional induction of three transcription factors called hypoxia inducible factor alpha 1, 2 and 3 (HIF-1α, HIF-2α, and HIF-3α) which dimerize with constitutively expressed beta chains that together form the HIF-1, -2 and -3 transcription factors. During normoxic conditions, the alpha chain is expressed at low levels since its stability is regulated by prolyl-hydroxylation that promotes subsequent ubiquitination and degradation. During hypoxic conditions, however, the prolyl hydroxylases are less active, and the alpha chain accumulates through elevated protein stability and the elevated induction of expression. Two of the three HIFs isoforms present in mammals, HIF-1 and HIF-2, are well characterized and have overlapping functions that promote cell survival, whereas HIF-3's role remains less clear. The HIF-3 response is complicated because the HIF3A gene can utilize different promotors and alternate splicing sites that result in a number of different HIF-3α isoforms. Here, using human umbilical vein endothelial cells (HUVECs), we demonstrate that one of the isoforms of HIF-3α, isoform 2 (HIF-3α2) accumulates at a late stage of hypoxia and induces the expression of DNA damage inducible transcript 3 (DDIT4), a gene known to promote apoptosis. We also demonstrate that caspase 3/7 activity is elevated, supporting that the role of the HIF-3α2 isoform is to promote apoptosis. Furthermore, we provide evidence that HIF-3α2 is also expressed in seven other primary endothelial cell types, suggesting that this may be a common feature of HIF-3α2 in endothelial cells.

18.
Hum Mutat ; 43(1): 74-84, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34747535

RESUMO

Constitutional LZTR1 or SMARCB1 pathogenic variants (PVs) have been found in ∼86% of familial and ∼40% of sporadic schwannomatosis cases. Hence, we performed massively parallel sequencing of the entire LZTR1, SMARCB1, and NF2 genomic loci in 35 individuals with schwannomas negative for constitutional first-hit PVs in the LZTR1/SMARCB1/NF2 coding sequences; however, with 22q deletion and/or a different NF2 PV in each tumor, including six cases with only one tumor available. Furthermore, we verified whether any other LZTR1/SMARCB1/NF2 (likely) PVs could be found in 16 cases carrying a SMARCB1 constitutional variant in the 3'-untranslated region (3'-UTR) c.*17C>T, c.*70C>T, or c.*82C>T. As no additional variants were found, functional studies were performed to clarify the effect of these 3'-UTR variants on the transcript. The 3'-UTR variants c.*17C>T and c.*82C>T showed pathogenicity by negatively affecting the SMARCB1 transcript level. Two novel deep intronic SMARCB1 variants, c.500+883T>G and c.500+887G>A, resulting in out-of-frame missplicing of intron 4, were identified in two unrelated individuals. Further resequencing of the entire repeat-masked genomics sequences of chromosome 22q in individuals negative for PVs in the SMARCB1/LZTR1/NF2 coding- and noncoding regions revealed five potential schwannomatosis-predisposing candidate genes, that is, MYO18B, NEFH, SGSM1, SGSM3, and SBF1, pending further verification.


Assuntos
Neurilemoma , Neurofibromatoses , Cromossomos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neurilemoma/genética , Neurilemoma/patologia , Neurofibromatoses/genética , Proteína SMARCB1/genética , Fatores de Transcrição/genética
19.
Cell Signal ; 90: 110209, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34890779

RESUMO

We analyzed the effects of selective knockdown of either HIF-1α or HIF-2α on the transcriptional response to hypoxia of human umbilical endothelial cells at two time-points (2 h and 8 h) of hypoxia. We focused on 13 previously identified hypoxia-responsive genes, pre-selected to have different activation kinetics and different proportions of HRE motifs annotated to either HIF-1 or HIF-2 in open promoters - open chromatin DNase-hypersensitive sites (DHS) regions within ±1 kb of the gene start. We report that genes activated by both HIF-1 and 2 tend to be activated earlier than genes activated by HIF-1 only, which, in turn, tend to be activated earlier than genes activated by HIF-2 only. Moreover, for the 13 analyzed genes, we found that the effect of silencing HIF1A on the gene induction by hypoxia is greater for the genes with more HRE motifs annotated to HIF-1 in their promoter open chromatin DHS regions within ±1 kb and also within ±10 kb of the gene start. We corroborated and extended this finding by showing that among 232 genes previously identified as activated by hypoxia, the genes with ChIP-seq peak(s) for HIF-1α within a ±10 kb flank of the gene start contain more HRE motifs annotated to HIF-1 in the DHS regions within this flank than the genes with no ChIP-seq peaks. Also in the whole genome, the DHS regions intersecting ChIP-seq peaks for HIF-1α contain more HRE motifs annotated to HIF-1 than the DHS regions not intersecting the ChIP-seq peaks. This suggests a mechanism, by which higher promoter content of HRE motifs in DHS regions increases HIF-1 binding, which in turn increases gene induction by hypoxia.


Assuntos
Células Endoteliais , Genoma , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/genética , Células Endoteliais/metabolismo , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Regiões Promotoras Genéticas/genética , Elementos de Resposta
20.
Cell Mol Life Sci ; 78(21-22): 7061-7080, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34636989

RESUMO

Accumulation of misfolded proteins in ER activates the unfolded protein response (UPR), a multifunctional signaling pathway that is important for cell survival. The UPR is regulated by three ER transmembrane sensors, one of which is inositol-requiring protein 1 (IRE1). IRE1 activates a transcription factor, X-box-binding protein 1 (XBP1), by removing a 26-base intron from XBP1 mRNA that generates spliced XBP1 mRNA (XBP1s). To search for XBP1 transcriptional targets, we utilized an XBP1s-inducible human cell line to limit XBP1 expression in a controlled manner. We also verified the identified XBP1-dependent genes with specific silencing of this transcription factor during pharmacological ER stress induction with both an N-linked glycosylation inhibitor (tunicamycin) and a non-competitive inhibitor of the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) (thapsigargin). We then compared those results to the XBP1s-induced cell line without pharmacological ER stress induction. Using next-generation sequencing followed by bioinformatic analysis of XBP1-binding motifs, we defined an XBP1 regulatory network and identified XBP1 as a repressor of PUMA (a proapoptotic gene) and IRE1 mRNA expression during the UPR. Our results indicate impairing IRE1 activity during ER stress conditions accelerates cell death in ER-stressed cells, whereas elevating XBP1 expression during ER stress using an inducible cell line correlated with a clear prosurvival effect and reduced PUMA protein expression. Although further studies will be required to test the underlying molecular mechanisms involved in the relationship between these genes with XBP1, these studies identify a novel repressive role of XBP1 during the UPR.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Endorribonucleases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/genética , Proteína 1 de Ligação a X-Box/genética , Linhagem Celular , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Células HaCaT , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Transdução de Sinais/genética , Resposta a Proteínas não Dobradas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA