Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Cancer ; 154(3): 454-464, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37694774

RESUMO

In pre-disposed individuals, a reprogramming of the hepatic lipid metabolism may support liver cancer initiation. We conducted a high-resolution mass spectrometry based untargeted lipidomics analysis of pre-diagnostic serum samples from a nested case-control study (219 liver cancer cases and 219 controls) within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. Out of 462 annotated lipids, 158 (34.2%) were associated with liver cancer risk in a conditional logistic regression analysis at a false discovery rate (FDR) <0.05. A chemical set enrichment analysis (ChemRICH) and co-regulatory set analysis suggested that 22/28 lipid classes and 47/83 correlation modules were significantly associated with liver cancer risk (FDR <0.05). Strong positive associations were observed for monounsaturated fatty acids (MUFA), triacylglycerols (TAGs) and phosphatidylcholines (PCs) having MUFA acyl chains. Negative associations were observed for sphingolipids (ceramides and sphingomyelins), lysophosphatidylcholines, cholesterol esters and polyunsaturated fatty acids (PUFA) containing TAGs and PCs. Stearoyl-CoA desaturase enzyme 1 (SCD1), a rate limiting enzyme in fatty acid metabolism and ceramidases seems to be critical in this reprogramming. In conclusion, our study reports pre-diagnostic lipid changes that provide novel insights into hepatic lipid metabolism reprogramming may contribute to a pro-cell growth and anti-apoptotic tissue environment and, in turn, support liver cancer initiation.


Assuntos
Lipidômica , Neoplasias Hepáticas , Humanos , Estudos de Casos e Controles , Estearoil-CoA Dessaturase/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Neoplasias Hepáticas/diagnóstico , Ácidos Graxos Insaturados , Ácidos Graxos Monoinsaturados , Triglicerídeos
2.
Metabolites ; 13(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37623890

RESUMO

Although metabolic alterations are observed in many monogenic and complex genetic disorders, the impact of most mammalian genes on cellular metabolism remains unknown. Understanding the effect of mouse gene dysfunction on metabolism can inform the functions of their human orthologues. We investigated the effect of loss-of-function mutations in 30 unique gene knockout (KO) lines on plasma metabolites, including genes coding for structural proteins (11 of 30), metabolic pathway enzymes (12 of 30) and protein kinases (7 of 30). Steroids, bile acids, oxylipins, primary metabolites, biogenic amines and complex lipids were analyzed with dedicated mass spectrometry platforms, yielding 827 identified metabolites in male and female KO mice and wildtype (WT) controls. Twenty-two percent of 23,698 KO versus WT comparison tests showed significant genotype effects on plasma metabolites. Fifty-six percent of identified metabolites were significantly different between the sexes in WT mice. Many of these metabolites were also found to have sexually dimorphic changes in KO lines. We used plasma metabolites to complement phenotype information exemplified for Dhfr, Idh1, Mfap4, Nek2, Npc2, Phyh and Sra1. The association of plasma metabolites with IMPC phenotypes showed dramatic sexual dimorphism in wildtype mice. We demonstrate how to link metabolomics to genotypes and (disease) phenotypes. Sex must be considered as critical factor in the biological interpretation of gene functions.

3.
Am J Clin Nutr ; 117(4): 731-740, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36781127

RESUMO

BACKGROUND: Epidemiologic evidence has linked refined grain intake to a higher risk of gestational diabetes (GDM), but the biological underpinnings remain unclear. OBJECTIVES: We aimed to identify and validate refined grain-related metabolomic biomarkers for GDM risk. METHODS: In a metabolome-wide association study of 91 cases with GDM and 180 matched controls without GDM (discovery set) nested in the prospective Pregnancy Environment and Lifestyle Study (PETALS), refined grain intake during preconception and early pregnancy and serum untargeted metabolomics were assessed at gestational weeks 10-13. We identified refined grain-related metabolites using multivariable linear regression and examined their prospective associations with GDM risk using conditional logistic regression. We further examined the predictivity of refined grain-related metabolites selected by least absolute shrinkage and selection operator regression in the discovery set and validation set (a random PETALS subsample of 38 individuals with and 336 without GDM). RESULTS: Among 821 annotated serum (87.4% fasting) metabolites, 42 were associated with refined grain intake, of which 17 (70.6% in glycerolipids, glycerophospholipids, and sphingolipids clusters) were associated with subsequent GDM risk (all false discovery rate-adjusted P values <0.05). Adding 7 of 17 metabolites to a conventional risk factor-based prediction model increased the C-statistic for GDM risk in the discovery set from 0.71 (95% CI: 0.64, 0.77) to 0.77 (95% CI: 0.71, 0.83) and in the validation set from 0.77 (95% CI: 0.69, 0.86) to 0.81 (95% CI: 0.74, 0.89), both with P-for-difference <0.05. CONCLUSIONS: Clusters of glycerolipids, glycerophospholipids, and sphingolipids may be implicated in the association between refined grain intake and GDM risk, as demonstrated by the significant associations of these metabolites with both refined grains and GDM risk and the incremental predictive value of these metabolites for GDM risk beyond the conventional risk factors. These findings provide evidence on the potential biological underpinnings linking refined grain intake to the risk of GDM and help identify novel disease-related dietary biomarkers to inform diet-related preventive strategies for GDM.


Assuntos
Diabetes Gestacional , Gravidez , Feminino , Humanos , Diabetes Gestacional/metabolismo , Metaboloma , Fatores de Risco , Esfingolipídeos , Biomarcadores , Grão Comestível/metabolismo , Glicerofosfolipídeos
5.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887252

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease characterized by unexplained physical fatigue, cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. People with ME/CFS often report a prodrome consistent with infections. Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of plasma from 106 ME/CFS cases and 91 frequency-matched healthy controls. Subjects in the ME/CFS group had significantly decreased levels of plasmalogens and phospholipid ethers (p < 0.001), phosphatidylcholines (p < 0.001) and sphingomyelins (p < 0.001), and elevated levels of dicarboxylic acids (p = 0.013). Using machine learning algorithms, we were able to differentiate ME/CFS or subgroups of ME/CFS from controls with area under the receiver operating characteristic curve (AUC) values up to 0.873. Our findings provide the first metabolomic evidence of peroxisomal dysfunction, and are consistent with dysregulation of lipid remodeling and the tricarboxylic acid cycle. These findings, if validated in other cohorts, could provide new insights into the pathogenesis of ME/CFS and highlight the potential use of the plasma metabolome as a source of biomarkers for the disease.


Assuntos
Síndrome de Fadiga Crônica , Teorema de Bayes , Biomarcadores , Estudos de Casos e Controles , Humanos , Metabolômica
6.
Diabetes ; 71(8): 1807-1817, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35532743

RESUMO

Gestational diabetes mellitus (GDM) predisposes pregnant individuals to perinatal complications and long-term diabetes and cardiovascular diseases. We developed and validated metabolomic markers for GDM in a prospective test-validation study. In a case-control sample within the PETALS cohort (GDM n = 91 and non-GDM n = 180; discovery set), a random PETALS subsample (GDM n = 42 and non-GDM n = 372; validation set 1), and a case-control sample within the GLOW trial (GDM n = 35 and non-GDM n = 70; validation set 2), fasting serum untargeted metabolomics were measured by gas chromatography/time-of-flight mass spectrometry. Multivariate enrichment analysis examined associations between metabolites and GDM. Ten-fold cross-validated LASSO regression identified predictive metabolomic markers at gestational weeks (GW) 10-13 and 16-19 for GDM. Purinone metabolites at GW 10-13 and 16-19 and amino acids, amino alcohols, hexoses, indoles, and pyrimidine metabolites at GW 16-19 were positively associated with GDM risk (false discovery rate <0.05). A 17-metabolite panel at GW 10-13 outperformed the model using conventional risk factors, including fasting glycemia (area under the curve: discovery 0.871 vs. 0.742, validation 1 0.869 vs. 0.731, and validation 2 0.972 vs. 0.742; P < 0.01). Similar results were observed with a 13-metabolite panel at GW 17-19. Dysmetabolism is present early in pregnancy among individuals progressing to GDM. Multimetabolite panels in early pregnancy can predict GDM risk beyond conventional risk factors.


Assuntos
Diabetes Gestacional , Biomarcadores , Diabetes Gestacional/metabolismo , Feminino , Humanos , Metabolômica/métodos , Gravidez , Estudos Prospectivos , Fatores de Risco
7.
medRxiv ; 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35043127

RESUMO

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a chronic and debilitating disease that is characterized by unexplained physical fatigue unrelieved by rest. Symptoms also include cognitive and sensory dysfunction, sleeping disturbances, orthostatic intolerance, and gastrointestinal problems. A syndrome clinically similar to ME/CFS has been reported following well-documented infections with the coronaviruses SARS-CoV and MERS-CoV. At least 10% of COVID-19 survivors develop post acute sequelae of SARS-CoV-2 infection (PASC). Although many individuals with PASC have evidence of structural organ damage, a subset have symptoms consistent with ME/CFS including fatigue, post exertional malaise, cognitive dysfunction, gastrointestinal disturbances, and postural orthostatic intolerance. These common features in ME/CFS and PASC suggest that insights into the pathogenesis of either may enrich our understanding of both syndromes, and could expedite the development of strategies for identifying those at risk and interventions that prevent or mitigate disease. METHODS: Using regression, Bayesian and enrichment analyses, we conducted targeted and untargeted metabolomic analysis of 888 metabolic analytes in plasma samples of 106 ME/CFS cases and 91 frequency-matched healthy controls. RESULTS: In ME/CFS cases, regression, Bayesian and enrichment analyses revealed evidence of peroxisomal dysfunction with decreased levels of plasmalogens. Other findings included decreased levels of several membrane lipids, including phosphatidylcholines and sphingomyelins, that may indicate dysregulation of the cytidine-5’-diphosphocholine pathway. Enrichment analyses revealed decreased levels of choline, ceramides and carnitines, and increased levels of long chain triglycerides (TG) and hydroxy-eicosapentaenoic acid. Elevated levels of dicarboxylic acids were consistent with abnormalities in the tricarboxylic acid cycle. Using machine learning algorithms with selected metabolites as predictors, we were able to differentiate female ME/CFS cases from female controls (highest AUC=0.794) and ME/CFS cases without self-reported irritable bowel syndrome (sr-IBS) from controls without sr-IBS (highest AUC=0.873). CONCLUSION: Our findings are consistent with earlier ME/CFS work indicating compromised energy metabolism and redox imbalance, and highlight new abnormalities that may provide insights into the pathogenesis of ME/CFS. ONE SENTENCE SUMMARY: Plasma levels of plasmalogens are decreased in patients with myalgic encephalomyelitis/chronic fatigue syndrome suggesting peroxisome dysfunction.

8.
Brain Commun ; 4(6): fcac318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37064049

RESUMO

Basal forebrain cholinergic neurons are among the first cell types affected by Alzheimer's disease pathology, but the cause of their early vulnerability is unknown. The lipid phosphatidylcholine is an essential component of the cell membrane, and phosphatidylcholine levels have been shown to be abnormal in the blood and brain of Alzheimer's disease patients. We hypothesized that disease-related changes in phosphatidylcholine metabolism may disproportionately affect basal forebrain cholinergic neurons due to their extremely large size, plasticity in adulthood and unique reliance on phosphatidylcholine for acetylcholine synthesis. To test this hypothesis, we examined whether serum phosphatidylcholine levels predicted longitudinal basal forebrain degeneration in Alzheimer's disease. All data were collected by the Alzheimer's Disease Neuroimaging Initiative. Participants were divided into a normal CSF group (controls; n = 77) and an abnormal CSF group (preclinical and clinical Alzheimer's disease; n = 236) based on their CSF ratios of phosphorylated tau and amyloid beta at baseline. Groups were age-matched (t = 0.89, P > 0.1). Serum lipidomics data collected at baseline were clustered by chemical similarity, and enrichment analyses were used to determine whether serum levels of any lipid clusters differed between the normal and abnormal CSF groups. In a subset of patients with longitudinal structural MRI (normal CSF n = 62, abnormal CSF n = 161), two timepoints of MRI data were used to calculate grey matter annual percent change for each participant. Multivariate partial least squares analyses tested for relationships between neuroimaging and lipidomics data which are moderated by CSF pathology. Our clustering analyses produced 23 serum lipid clusters. Of these clusters, six were altered in the abnormal CSF group, including a cluster of unsaturated phosphatidylcholines. In the subset of participants with longitudinal structural MRI data, a priori nucleus basalis of Meynert partial least squares analyses detected a relationship between unsaturated phosphatidylcholines and degeneration in the nucleus basalis which is moderated by Alzheimer's disease CSF pathology (P = 0.0008). Whole-brain grey matter partial least squares analyses of all 23 lipid clusters revealed that only unsaturated phosphatidylcholines and unsaturated acylcarnitines exhibited an Alzheimer's disease-dependent relationship with longitudinal degeneration (P = 0.0022 and P = 0.0018, respectively). Only the unsaturated phosphatidylcholines predicted basal forebrain degeneration in the whole-brain analyses. Overall, this study provides in vivo evidence for a selective relationship between phosphatidylcholine and basal forebrain degeneration in human Alzheimer's disease, highlighting the importance of phosphatidylcholine to basal forebrain grey matter integrity.

9.
Nutrients ; 13(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34836252

RESUMO

Postprandial lipemia (PPL) is an important risk factor for cardiovascular disease. Inter-individual variation in the dietary response to a meal is known to be influenced by genetic factors, yet genes that dictate variation in postprandial lipids are not completely characterized. Genetic studies of the plasma lipidome can help to better understand postprandial metabolism by isolating lipid molecular species which are more closely related to the genome. We measured the plasma lipidome at fasting and 6 h after a standardized high-fat meal in 668 participants from the Genetics of Lipid-Lowering Drugs and Diet Network study (GOLDN) using ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry. A total of 413 unique lipids were identified. Heritable and responsive lipid species were examined for association with single-nucleotide polymorphisms (SNPs) genotyped on the Affymetrix 6.0 array. The most statistically significant SNP findings were replicated in the Amish Heredity and Phenotype Intervention (HAPI) Heart Study. We further followed up findings from GOLDN with a regional analysis of cytosine-phosphate-guanine (CpGs) sites measured on the Illumina HumanMethylation450 array. A total of 132 lipids were both responsive to the meal challenge and heritable in the GOLDN study. After correction for multiple testing of 132 lipids (α = 5 × 10-8/132 = 4 × 10-10), no SNP was statistically significantly associated with any lipid response. Four SNPs in the region of a known lipid locus (fatty acid desaturase 1 and 2/FADS1 and FADS2) on chromosome 11 had p < 8.0 × 10-7 for arachidonic acid FA(20:4). Those SNPs replicated in HAPI Heart with p < 3.3 × 10-3. CpGs around the FADS1/2 region were associated with arachidonic acid and the relationship of one SNP was partially mediated by a CpG (p = 0.005). Both SNPs and CpGs from the fatty acid desaturase region on chromosome 11 contribute jointly and independently to the diet response to a high-fat meal.


Assuntos
Genômica , Hipolipemiantes/farmacologia , Lipidômica , Período Pós-Prandial/efeitos dos fármacos , Período Pós-Prandial/genética , Adulto , Idoso , Dessaturase de Ácido Graxo Delta-5/genética , Ácidos Graxos Dessaturases/genética , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Lipídeos , Masculino , Refeições , Pessoa de Meia-Idade , Fenótipo , Plasma , Polimorfismo de Nucleotídeo Único
10.
Metabolites ; 10(1)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947545

RESUMO

The latest worldwide prevalence rate projects that over 65 million patients suffer from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), an illness with known effects on the functioning of the immune and nervous systems. We performed an extensive metabolomics analysis on the plasma of 52 female subjects, equally sampled between controls and ME/CFS patients, which delivered data for about 1750 blood compounds spanning 20 super-pathways, subdivided into 113 sub-pathways. Statistical analysis combined with pathway enrichment analysis points to a few disrupted metabolic pathways containing many unexplored compounds. The most intriguing finding concerns acyl cholines, belonging to the fatty acid metabolism sub-pathway of lipids, for which all compounds are consistently reduced in two distinct ME/CFS patient cohorts. We compiled the extremely limited knowledge about these compounds and regard them as promising in the quest to explain many of the ME/CFS symptoms. Another class of lipids with far-reaching activity on virtually all organ systems are steroids; androgenic, progestin, and corticosteroids are broadly reduced in our patient cohort. We also report on lower dipeptides and elevated sphingolipids abundance in patients compared to controls. Disturbances in the metabolism of many of these molecules can be linked to the profound organ system symptoms endured by ME/CFS patients.

11.
Metabolites ; 9(5)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121816

RESUMO

Mouse knockouts facilitate the study ofgene functions. Often, multiple abnormal phenotypes are induced when a gene is inactivated. The International Mouse Phenotyping Consortium (IMPC) has generated thousands of mouse knockouts and catalogued their phenotype data. We have acquired metabolomics data from 220 plasma samples from 30 unique mouse gene knockouts and corresponding wildtype mice from the IMPC. To acquire comprehensive metabolomics data, we have used liquid chromatography (LC) combined with mass spectrometry (MS) for detecting polar and lipophilic compounds in an untargeted approach. We have also used targeted methods to measure bile acids, steroids and oxylipins. In addition, we have used gas chromatography GC-TOFMS for measuring primary metabolites. The metabolomics dataset reports 832 unique structurally identified metabolites from 124 chemical classes as determined by ChemRICH software. The GCMS and LCMS raw data files, intermediate and finalized data matrices, R-Scripts, annotation databases, and extracted ion chromatograms are provided in this data descriptor. The dataset can be used for subsequent studies to link genetic variants with molecular mechanisms and phenotypes.

12.
Anal Chem ; 91(5): 3590-3596, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30758187

RESUMO

Large-scale untargeted lipidomics experiments involve the measurement of hundreds to thousands of samples. Such data sets are usually acquired on one instrument over days or weeks of analysis time. Such extensive data acquisition processes introduce a variety of systematic errors, including batch differences, longitudinal drifts, or even instrument-to-instrument variation. Technical data variance can obscure the true biological signal and hinder biological discoveries. To combat this issue, we present a novel normalization approach based on using quality control pool samples (QC). This method is called systematic error removal using random forest (SERRF) for eliminating the unwanted systematic variations in large sample sets. We compared SERRF with 15 other commonly used normalization methods using six lipidomics data sets from three large cohort studies (832, 1162, and 2696 samples). SERRF reduced the average technical errors for these data sets to 5% relative standard deviation. We conclude that SERRF outperforms other existing methods and can significantly reduce the unwanted systematic variation, revealing biological variance of interest.


Assuntos
Conjuntos de Dados como Assunto/normas , Lipidômica/normas , Controle de Qualidade , Erro Científico Experimental/estatística & dados numéricos
13.
Am J Physiol Renal Physiol ; 315(6): F1855-F1868, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30280600

RESUMO

Research into metabolic reprogramming in cancer has become commonplace, yet this area of research has only recently come of age in nephrology. In light of the parallels between cancer and autosomal dominant polycystic kidney disease (ADPKD), the latter is currently being studied as a metabolic disease. In clear cell renal cell carcinoma (RCC), which is now considered a metabolic disease, we and others have shown derangements in the enzyme arginosuccinate synthase 1 (ASS1), resulting in RCC cells becoming auxotrophic for arginine and leading to a new therapeutic paradigm involving reducing extracellular arginine. Based on our earlier finding that glutamine pathways are reprogrammed in ARPKD, and given the connection between arginine and glutamine synthetic pathways via citrulline, we investigated the possibility of arginine reprogramming in ADPKD. We now show that, in a remarkable parallel to RCC, ASS1 expression is reduced in murine and human ADPKD, and arginine depletion results in a dose-dependent compensatory increase in ASS1 levels as well as decreased cystogenesis in vitro and ex vivo with minimal toxicity to normal cells. Nontargeted metabolomics analysis of mouse kidney cell lines grown in arginine-deficient versus arginine-replete media suggests arginine-dependent alterations in the glutamine and proline pathways. Thus, depletion of this conditionally essential amino acid by dietary or pharmacological means, such as with arginine-degrading enzymes, may be a novel treatment for this disease.


Assuntos
Arginina/metabolismo , Proliferação de Células , Metabolismo Energético , Rim/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Animais , Arginina/deficiência , Arginina/farmacologia , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Feminino , Predisposição Genética para Doença , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Metabolômica/métodos , Camundongos Knockout , Fenótipo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Transdução de Sinais , Canais de Cátion TRPP/deficiência , Canais de Cátion TRPP/genética
14.
Sci Rep ; 8(1): 10056, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29968805

RESUMO

The pathogenesis of ME/CFS, a disease characterized by fatigue, cognitive dysfunction, sleep disturbances, orthostatic intolerance, fever, irritable bowel syndrome (IBS), and lymphadenopathy, is poorly understood. We report biomarker discovery and topological analysis of plasma metabolomic, fecal bacterial metagenomic, and clinical data from 50 ME/CFS patients and 50 healthy controls. We confirm reports of altered plasma levels of choline, carnitine and complex lipid metabolites and demonstrate that patients with ME/CFS and IBS have increased plasma levels of ceramide. Integration of fecal metagenomic and plasma metabolomic data resulted in a stronger predictive model of ME/CFS (cross-validated AUC = 0.836) than either metagenomic (cross-validated AUC = 0.745) or metabolomic (cross-validated AUC = 0.820) analysis alone. Our findings may provide insights into the pathogenesis of ME/CFS and its subtypes and suggest pathways for the development of diagnostic and therapeutic strategies.


Assuntos
Síndrome de Fadiga Crônica/metabolismo , Síndrome de Fadiga Crônica/patologia , Metabolômica/métodos , Biomarcadores , Estudos de Casos e Controles , Fadiga , Síndrome de Fadiga Crônica/diagnóstico , Fezes/microbiologia , Feminino , Humanos , Síndrome do Intestino Irritável , Masculino , Metagenômica/métodos , Pessoa de Meia-Idade , Fenótipo , Transtornos do Sono-Vigília
15.
Environ Int ; 111: 60-70, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29179034

RESUMO

BACKGROUND: Exposure to disinfection by-products (DBPs) in drinking water and chlorinated swimming pools are associated with adverse health outcomes, but biological mechanisms remain poorly understood. OBJECTIVES: Evaluate short-term changes in metabolic profiles in response to DBP exposure while swimming in a chlorinated pool. MATERIALS AND METHODS: The PISCINA-II study (EXPOsOMICS project) includes 60 volunteers swimming 40min in an indoor pool. Levels of most common DBPs were measured in water and in exhaled breath before and after swimming. Blood samples, collected before and 2h after swimming, were used for metabolic profiling by liquid-chromatography coupled to high-resolution mass-spectrometry. Metabolome-wide association between DBP exposures and each metabolic feature was evaluated using multivariate normal (MVN) models. Sensitivity analyses and compound annotation were conducted. RESULTS: Exposure levels of all DBPs in exhaled breath were higher after the experiment. A total of 6,471 metabolic features were detected and 293 features were associated with at least one DBP in exhaled breath following Bonferroni correction. A total of 333 metabolic features were associated to at least one DBP measured in water or urine. Uptake of DBPs and physical activity were strongly correlated and mutual adjustment reduced the number of statistically significant associations. From the 293 features, 20 could be identified corresponding to 13 metabolites including compounds in the tryptophan metabolism pathway. CONCLUSION: Our study identified numerous molecular changes following a swim in a chlorinated pool. While we could not explicitly evaluate which experiment-related factors induced these associations, molecular characterization highlighted metabolic features associated with exposure changes during swimming.


Assuntos
Desinfecção , Metaboloma , Piscinas , Natação , Poluentes Químicos da Água/análise , Adolescente , Adulto , Monitoramento Ambiental , Feminino , Halogenação , Humanos , Masculino , Adulto Jovem
16.
Oncotarget ; 8(47): 81910-81925, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29137232

RESUMO

Esophageal squamous cell carcinoma (ESCC) in humans is a deadly disease associated with dietary zinc (Zn)-deficiency. In the rat esophagus, Zn-deficiency induces cell proliferation, alters mRNA and microRNA gene expression, and promotes ESCC. We investigated whether Zn-deficiency alters cell metabolism by evaluating metabolomic profiles of esophageal epithelia from Zn-deficient and replenished rats vs sufficient rats, using untargeted gas chromatography time-of-flight mass spectrometry (n = 8/group). The Zn-deficient proliferative esophagus exhibits a distinct metabolic profile with glucose down 153-fold and lactic acid up 1.7-fold (P < 0.0001), indicating aerobic glycolysis (the "Warburg effect"), a hallmark of cancer cells. Zn-replenishment rapidly increases glucose content, restores deregulated metabolites to control levels, and reverses the hyperplastic phenotype. Integration of metabolomics and our reported transcriptomic data for this tissue unveils a link between glucose down-regulation and overexpression of HK2, an enzyme that catalyzes the first step of glycolysis and is overexpressed in cancer cells. Searching our published microRNA profile, we find that the tumor-suppressor miR-143, a negative regulator of HK2, is down-regulated in Zn-deficient esophagus. Using in situ hybridization and immunohistochemical analysis, the inverse correlation between miR-143 down-regulation and HK2 overexpression is documented in hyperplastic Zn-deficient esophagus, archived ESCC-bearing Zn-deficient esophagus, and human ESCC tissues. Thus, to sustain uncontrolled cell proliferation, Zn-deficiency reprograms glucose metabolism by modulating expression of miR-143 and its target HK2. Our work provides new insight into critical roles of Zn in ESCC development and prevention.

17.
Anal Chem ; 89(7): 3919-3928, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28225587

RESUMO

A long-standing challenge of untargeted metabolomic profiling by ultrahigh-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) is efficient transition from unknown mass spectral features to confident metabolite annotations. The compMS2Miner (Comprehensive MS2 Miner) package was developed in the R language to facilitate rapid, comprehensive feature annotation using a peak-picker-output and MS2 data files as inputs. The number of MS2 spectra that can be collected during a metabolomic profiling experiment far outweigh the amount of time required for pain-staking manual interpretation; therefore, a degree of software workflow autonomy is required for broad-scale metabolite annotation. CompMS2Miner integrates many useful tools in a single workflow for metabolite annotation and also provides a means to overview the MS2 data with a Web application GUI compMS2Explorer (Comprehensive MS2 Explorer) that also facilitates data-sharing and transparency. The automatable compMS2Miner workflow consists of the following steps: (i) matching unknown MS1 features to precursor MS2 scans, (ii) filtration of spectral noise (dynamic noise filter), (iii) generation of composite mass spectra by multiple similar spectrum signal summation and redundant/contaminant spectra removal, (iv) interpretation of possible fragment ion substructure using an internal database, (v) annotation of unknowns with chemical and spectral databases with prediction of mammalian biotransformation metabolites, wrapper functions for in silico fragmentation software, nearest neighbor chemical similarity scoring, random forest based retention time prediction, text-mining based false positive removal/true positive ranking, chemical taxonomic prediction and differential evolution based global annotation score optimization, and (vi) network graph visualizations, data curation, and sharing are made possible via the compMS2Explorer application. Metabolite identities and comments can also be recorded using an interactive table within compMS2Explorer. The utility of the package is illustrated with a data set of blood serum samples from 7 diet induced obese (DIO) and 7 nonobese (NO) C57BL/6J mice, which were also treated with an antibiotic (streptomycin) to knockdown the gut microbiota. The results of fully autonomous and objective usage of compMS2Miner are presented here. All automatically annotated spectra output by the workflow are provided in the Supporting Information and can alternatively be explored as publically available compMS2Explorer applications for both positive and negative modes ( https://wmbedmands.shinyapps.io/compMS2_mouseSera_POS and https://wmbedmands.shinyapps.io/compMS2_mouseSera_NEG ). The workflow provided rapid annotation of a diversity of endogenous and gut microbially derived metabolites affected by both diet and antibiotic treatment, which conformed to previously published reports. Composite spectra (n = 173) were autonomously matched to entries of the Massbank of North America (MoNA) spectral repository. These experimental and virtual (lipidBlast) spectra corresponded to 29 common endogenous compound classes (e.g., 51 lysophosphatidylcholines spectra) and were then used to calculate the ranking capability of 7 individual scoring metrics. It was found that an average of the 7 individual scoring metrics provided the most effective weighted average ranking ability of 3 for the MoNA matched spectra in spite of potential risk of false positive annotations emerging from automation. Minor structural differences such as relative carbon-carbon double bond positions were found in several cases to affect the correct rank of the MoNA annotated metabolite. The latest release and an example workflow is available in the package vignette ( https://github.com/WMBEdmands/compMS2Miner ) and a version of the published application is available on the shinyapps.io site ( https://wmbedmands.shinyapps.io/compMS2Example ).


Assuntos
Automação , Conjuntos de Dados como Assunto , Disseminação de Informação , Metabolômica , Software , Animais , Cromatografia Líquida de Alta Pressão , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL
18.
Int J Cancer ; 140(8): 1836-1844, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28006847

RESUMO

Flavonoids have been shown to inhibit colon cancer cell proliferation in vitro and protect against colorectal carcinogenesis in animal models. However, epidemiological evidence on the potential role of flavonoid intake in colorectal cancer (CRC) development remains sparse and inconsistent. We evaluated the association between dietary intakes of total flavonoids and their subclasses and risk of development of CRC, within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. A cohort of 477,312 adult men and women were recruited in 10 European countries. At baseline, dietary intakes of total flavonoids and individual subclasses were estimated using centre-specific validated dietary questionnaires and composition data from the Phenol-Explorer database. During an average of 11 years of follow-up, 4,517 new cases of primary CRC were identified, of which 2,869 were colon (proximal = 1,298 and distal = 1,266) and 1,648 rectal tumours. No association was found between total flavonoid intake and the risk of overall CRC (HR for comparison of extreme quintiles 1.05, 95% CI 0.93-1.18; p-trend = 0.58) or any CRC subtype. No association was also observed with any intake of individual flavonoid subclasses. Similar results were observed for flavonoid intake expressed as glycosides or aglycone equivalents. Intake of total flavonoids and flavonoid subclasses, as estimated from dietary questionnaires, did not show any association with risk of CRC development.


Assuntos
Neoplasias Colorretais/dietoterapia , Dieta/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Flavonoides/uso terapêutico , Adulto , Idoso , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/patologia , Europa (Continente) , Feminino , Flavonoides/efeitos adversos , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Estado Nutricional , Estudos Prospectivos , Fatores de Risco , Inquéritos e Questionários , População Branca
19.
Chem Res Toxicol ; 29(11): 1818-1827, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27788581

RESUMO

Human exposure to environmental tobacco smoke (ETS) is associated with an increased incidence of pulmonary and cardiovascular disease and possibly lung cancer. Metabolomics can reveal changes in metabolic networks in organisms under different physio-pathological conditions. Our objective was to identify spatial and temporal metabolic alterations with acute and repeated subchronic ETS exposure to understand mechanisms by which ETS exposure may cause adverse physiological and structural changes in the pulmonary and cardiovascular systems. Established and validated metabolomics assays of the lungs, hearts. and blood of young adult male rats following 1, 3, 8, and 21 days of exposure to ETS along with day-matched sham control rats (n = 8) were performed using gas chromatography time-of-flight mass spectrometry, BinBase database processing, multivariate statistical modeling, and MetaMapp biochemical mapping. A total of 489 metabolites were measured in the lung, heart, and blood, of which 142 metabolites were identified using a standardized metabolite annotation pipeline. Acute and repeated subchronic exposure to ETS was associated with significant metabolic changes in the lung related to energy metabolism, defense against reactive oxygen species, substrate uptake and transport, nucleotide metabolism, and substrates for structural components of collagen and membrane lipids. Metabolic changes were least prevalent in heart tissues but abundant in blood under repeated subchronic ETS exposure. Our analyses revealed that ETS causes alterations in metabolic networks, especially those associated with lung structure and function and found as systemic signals in the blood. The metabolic changes suggest that ETS exposure may adversely affects the mitochondrial respiratory chain, lung elasticity, membrane integrity, redox states, cell cycle, and normal metabolic and physiological functions of the lungs, even after subchronic ETS exposure.


Assuntos
Redes e Vias Metabólicas , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Sistema Cardiovascular/metabolismo , Pulmão/metabolismo , Masculino , Metabolômica , Ratos , Ratos Sprague-Dawley
20.
Am J Clin Nutr ; 102(4): 905-13, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26269369

RESUMO

BACKGROUND: An improved understanding of the contribution of the diet to health and disease risks requires accurate assessments of dietary exposure in nutritional epidemiologic studies. The use of dietary biomarkers may improve the accuracy of estimates. OBJECTIVE: We applied a metabolomic approach in a large cohort study to identify novel biomarkers of intake for a selection of polyphenol-containing foods. The large chemical diversity of polyphenols and their wide distribution over many foods make them ideal biomarker candidates for such foods. DESIGN: Metabolic profiles were measured with the use of high-resolution mass spectrometry in 24-h urine samples from 481 subjects from the large European Prospective Investigation on Cancer and Nutrition cohort. Peak intensities were correlated to acute and habitual dietary intakes of 6 polyphenol-rich foods (coffee, tea, red wine, citrus fruit, apples and pears, and chocolate products) measured with the use of 24-h dietary recalls and food-frequency questionnaires, respectively. RESULTS: Correlation (r > 0.3, P < 0.01 after correction for multiple testing) and discriminant [pcorr (1) > 0.3, VIP > 1.5] analyses showed that >2000 mass spectral features from urine metabolic profiles were significantly associated with the consumption of the 6 selected foods. More than 80 polyphenol metabolites associated with the consumption of the selected foods could be identified, and large differences in their concentrations reflecting individual food intakes were observed within and between 4 European countries. Receiver operating characteristic curves showed that 5 polyphenol metabolites, which are characteristic of 5 of the 6 selected foods, had a high predicting ability of food intake. CONCLUSION: Highly diverse food-derived metabolites (the so-called food metabolome) can be characterized in human biospecimens through this powerful metabolomic approach and screened to identify novel biomarkers for dietary exposures, which are ultimately essential to better understand the role of the diet in the cause of chronic diseases.


Assuntos
Biomarcadores/urina , Dieta , Metaboloma , Polifenóis/administração & dosagem , Polifenóis/urina , Cacau , Citrus , Café , Europa (Continente) , Feminino , Frutas , Humanos , Masculino , Malus , Rememoração Mental , Metabolômica , Pessoa de Meia-Idade , Estudos Prospectivos , Pyrus , Inquéritos e Questionários , Chá , Vinho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA