Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Subcell Biochem ; 104: 207-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963489

RESUMO

The transient receptor potential ion channel TRPA1 is a Ca2+-permeable nonselective cation channel widely expressed in sensory neurons, but also in many nonneuronal tissues typically possessing barrier functions, such as the skin, joint synoviocytes, cornea, and the respiratory and intestinal tracts. Here, the primary role of TRPA1 is to detect potential danger stimuli that may threaten the tissue homeostasis and the health of the organism. The ability to directly recognize signals of different modalities, including chemical irritants, extreme temperatures, or osmotic changes resides in the characteristic properties of the ion channel protein complex. Recent advances in cryo-electron microscopy have provided an important framework for understanding the molecular basis of TRPA1 function and have suggested novel directions in the search for its pharmacological regulation. This chapter summarizes the current knowledge of human TRPA1 from a structural and functional perspective and discusses the complex allosteric mechanisms of activation and modulation that play important roles under physiological or pathophysiological conditions. In this context, major challenges for future research on TRPA1 are outlined.


Assuntos
Canal de Cátion TRPA1 , Humanos , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/fisiologia , Microscopia Crioeletrônica/métodos , Animais , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/fisiologia , Relação Estrutura-Atividade , Regulação Alostérica
2.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928485

RESUMO

Gyrophoric acid (GA), a lichen secondary metabolite, has attracted more attention during the last years because of its potential biological effects. Until now, its effect in vivo has not yet been demonstrated. The aim of our study was to evaluate the basic physicochemical and pharmacokinetic properties of GA, which are directly associated with its biological activities. The stability of the GA in various pH was assessed by conducting repeated UV-VIS spectral measurements. Microsomal stability in rat liver microsomes was performed using Ultra-Performance LC/MS. Binding to human serum albumin (HSA) was assessed using synchronous fluorescence spectra, and molecular docking analysis was used to reveal the binding site of GA to HSA. In the in vivo experiment, 24 Sprague-Dawley rats (Velaz, Únetice, Czech Republic) were used. The animals were divided as follows. The first group (n = 6) included healthy males as control intact rats (♂INT), and the second group (n = 6) included healthy females as controls (♀INT). Groups three and four (♂GA/n = 6 and ♀GA/n = 6) consisted of animals with daily administered GA (10 mg/kg body weight) in an ethanol-water solution per os for a one-month period. We found that GA remained stable under various pH and temperature conditions. It bonded to human serum albumin with the binding constant 1.788 × 106 dm3mol-1 to reach the target tissue via this mechanism. In vivo, GA did not influence body mass gain, food, or fluid intake during the experiment. No liver toxicity was observed. However, GA increased the rearing frequency in behavioral tests (p < 0.01) and center crossings in the elevated plus-maze (p < 0.01 and p < 0.001, respectively). In addition, the time spent in the open arm was prolonged (p < 0.01 and p < 0.001, respectively). Notably, GA was able to pass through the blood-brain barrier, indicating its ability to permeate into the brain and to stimulate neurogenesis in the hilus and subgranular zone of the hippocampus. These observations highlight the potential role of GA in influencing brain function and neurogenesis.


Assuntos
Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Animais , Ratos , Masculino , Feminino , Humanos , Microssomos Hepáticos/metabolismo , Concentração de Íons de Hidrogênio , Albumina Sérica Humana/metabolismo , Albumina Sérica Humana/química , Ligação Proteica
3.
Beilstein J Org Chem ; 20: 331-335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410781

RESUMO

13C NMR spectroscopic analyses of Cs symmetric guest molecules in the cyclodextrin host cavity, combined with molecular modelling and solid-state X-ray analysis, provides a detailed description of the spatial arrangement of cyclodextrin host-guest complexes in solution. The chiral cavity of the cyclodextrin molecule creates an anisotropic environment for the guest molecule resulting in a splitting of its prochiral carbon signals in 13C NMR spectra. This signal split can be correlated to the distance of the guest atoms from the wall of the host cavity and to the spatial separation of binding sites preferred by pairs of prochiral carbon atoms. These measurements complement traditional solid-state analyses, which rely on the crystallization of host-guest complexes and their crystallographic analysis.

4.
Life (Basel) ; 12(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35888178

RESUMO

Atranorin (ATR) is a secondary metabolite of lichens. While previous studies investigated the effects of this substance predominantly in an in vitro environment, in our study we investigated the basic physicochemical properties, the binding affinity to human serum albumin (HSA), basic pharmacokinetics, and, mainly, on the systematic effects of ATR in vivo. Sporadic studies describe its effects during, predominantly, cancer. This project is original in terms of testing the efficacy of ATR on a healthy organism, where we can possibly attribute negative effects directly to ATR and not to the disease. For the experiment, 24 Sprague Dawley rats (Velaz, Únetice, Czech Republic) were used. The animals were divided into four groups. The first group (n = 6) included healthy males as control intact rats (♂INT) and the second group (n = 6) included healthy females as control intact rats (♀INT). Groups three and four (♂ATR/n = 6 and ♀ATR/n = 6) consisted of animals with daily administered ATR (10mg/kg body weight) in an ethanol-water solution per os for a one-month period. Our results demonstrate that ATR binds to HSA near the binding site TRP214 and acts on a systemic level. ATR caused mild anemia during the treatment. However, based on the levels of hepatic enzymes in the blood (ALT, ALP, or bilirubin levels), thiobarbituric acid reactive substances (TBARS), or liver histology, no impact on liver was recorded. Significantly increased creatinine and lactate dehydrogenase levels together with increased defecation activity during behavioral testing may indicate the anabolic effect of ATR in skeletal muscles. Interestingly, ATR changed some forms of behavior. ATR at a dose of 10 mg/kg body weight is non-toxic and, therefore, could be used in further research.

5.
Org Biomol Chem ; 20(19): 3960-3966, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35471452

RESUMO

Polycyclic compounds with N-methyl substitution, structurally related to Amaryllidaceae alkaloids, have been synthesised, together with their analogues bearing a quaternary nitrogen atom. To prevent the lone electron pair of the nitrogen from interfering with the reaction sequence, two approaches to the synthesis were investigated: N-oxidation and Boc protection of the nitrogen. The second method was more successful due to the limited stability of N-oxides in the halocyclisation step. An asymmetric version of the synthesis was also developed for this type of compounds. The prepared products were tested in vitro for their cholinesterase inhibitory activity and the results were rationalised by molecular docking studies with human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE). In general, our products were more active against BuChE than against AChE, and it was noted that larger ligands should be prepared for future studies, since in some cases acetylcholine can still fit into the active site along with the bound ligand.


Assuntos
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Acetilcolinesterase/metabolismo , Alcaloides/química , Amaryllidaceae/química , Amaryllidaceae/metabolismo , Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacologia , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Humanos , Simulação de Acoplamento Molecular , Nitrogênio , Relação Estrutura-Atividade
6.
Org Biomol Chem ; 20(14): 2889-2895, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319560

RESUMO

Inspired by the ability of boronic acids to bind with compounds containing diol moieties, we envisioned the formation in solution of boronate ester-based macrocycles by the head-to-tail assembly of a nucleosidic precursor that contains both a boronic acid and the natural 2',3'-diol of ribose. DOSY NMR spectroscopy experiments in water and anhydrous DMF revealed the dynamic assembly of this precursor into dimeric and trimeric macrocycles in a concentration-dependent fashion as well as the reversibility of the self-assembly process. NMR experimental values and quantum mechanics calculations provided further insight into the sugar pucker conformation profile of these macrocycles.


Assuntos
Ácidos Nucleicos , Ácidos Borônicos/química , Ésteres/química , Espectroscopia de Ressonância Magnética
7.
Front Microbiol ; 13: 1059649, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36925999

RESUMO

The sigma H (σΗ) and sigma E (σE) subunits of Corynebacterium glutamicum RNA polymerase belong to Group 4 of sigma factors, also called extracytoplasmic function (ECF) sigma factors. Genes of the C. glutamicum σΗ regulon that are involved in heat and oxidative stress response have already been defined, whereas the genes of the σE regulon, which is involved in cell surface stress response, have not been explored until now. Using the C. glutamicum RES167 strain and its derivative C. glutamicum ΔcseE with a deletion in the anti-σΕ gene, differential gene expression was analyzed by RNA sequencing. We found 296 upregulated and 398 downregulated genes in C. glutamicum ΔcseE compared to C. glutamicum RES167. To confirm the functional link between σΕ and the corresponding promoters, we tested selected promoters using the in vivo two-plasmid system with gfpuv as a reporter gene and by in vitro transcription. Analyses with RNAP+σΗ and RNAP+σΕ, which were previously shown to recognize similar promoters, proved that the σΗ and σE regulons significantly overlap. The σE-controlled genes were found to be involved for example in protein quality control (dnaK, dnaJ2, clpB, and clpC), the regulation of Clp proteases (clgR), and membrane integrity maintenance. The single-promoter analyses with σΗ and σΕ revealed that there are two groups of promoters: those which are exclusively σΗ-specific, and the other group of promoters, which are σΗ/σE-dependent. No exclusively σE-dependent promoter was detected. We defined the consensus sequences of exclusively σΗ-regulated promotors to be -35 GGAAt and - 10 GTT and σΗ/σE-regulated promoters to be -35 GGAAC and - 10 cGTT. Fifteen genes were found to belong to the σΗ/σΕ regulon. Homology modeling showed that there is a specific interaction between Met170 in σΗ and the nucleotides -31 and - 30 within the non-coding strand (AT or CT) of the σΗ-dependent promoters. In σE, Arg185 was found to interact with the nucleotides GA at the same positions in the σE-dependent promoters.

8.
Small Methods ; 5(10): e2100370, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34927934

RESUMO

Diffusion is the most fundamental mode of protein translocation within cells. Confined diffusion of proteins along the electrostatic potential constituted by the surface of microtubules, although modeled meticulously in molecular dynamics simulations, has not been experimentally observed in real-time. Here, interferometric scattering microscopy is used to directly visualize the movement of the microtubule-associated protein Ase1 along the microtubule surface at nanometer and microsecond resolution. Millisecond confinements of Ase1 and fast leaps between these positions of dwelling preferentially occurring along the microtubule protofilaments are resolved, revealing Ase1's mode of diffusive translocation along the microtubule's periodic surface. The derived interaction potential closely matches the tubulin-dimer periodicity and the distribution of the electrostatic potential on the microtubule lattice. It is anticipated that mapping the interaction landscapes for different proteins on microtubules, finding plausible energetic barriers of different positioning and heights, can provide valuable insights into regulating the dynamics of essential cytoskeletal processes, such as intracellular cargo trafficking, cell division, and morphogenesis, all of which rely on diffusive translocation of proteins along microtubules.


Assuntos
Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Animais , Divisão Celular , Simulação de Dinâmica Molecular , Domínios Proteicos , Transporte Proteico , Imagem Individual de Molécula , Análise Espaço-Temporal , Suínos
9.
Nat Commun ; 11(1): 6419, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339823

RESUMO

RNA synthesis is central to life, and RNA polymerase (RNAP) depends on accessory factors for recovery from stalled states and adaptation to environmental changes. Here, we investigated the mechanism by which a helicase-like factor HelD recycles RNAP. We report a cryo-EM structure of a complex between the Mycobacterium smegmatis RNAP and HelD. The crescent-shaped HelD simultaneously penetrates deep into two RNAP channels that are responsible for nucleic acids binding and substrate delivery to the active site, thereby locking RNAP in an inactive state. We show that HelD prevents non-specific interactions between RNAP and DNA and dissociates stalled transcription elongation complexes. The liberated RNAP can either stay dormant, sequestered by HelD, or upon HelD release, restart transcription. Our results provide insights into the architecture and regulation of the highly medically-relevant mycobacterial transcription machinery and define HelD as a clearing factor that releases RNAP from nonfunctional complexes with nucleic acids.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Mycobacterium smegmatis/enzimologia , Ácidos Nucleicos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Domínio Catalítico , Microscopia Crioeletrônica , DNA Bacteriano/química , DNA Bacteriano/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/ultraestrutura , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
10.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121177

RESUMO

The Transient Receptor Potential Ankyrin 1 (TRPA1) channel is an integrative molecular sensor for detecting environmental irritant compounds, endogenous proalgesic and inflammatory agents, pressure, and temperature. Different post-translational modifications participate in the discrimination of the essential functions of TRPA1 in its physiological environment, but the underlying structural bases are poorly understood. Here, we explored the role of the cytosolic N-terminal residue Ser602 located near a functionally important allosteric coupling domain as a potential target of phosphorylation. The phosphomimetic mutation S602D completely abrogated channel activation, whereas the phosphonull mutations S602G and S602N produced a fully functional channel. Using mutagenesis, electrophysiology, and molecular simulations, we investigated the possible structural impact of a modification (mutation or phosphorylation) of Ser602 and found that this residue represents an important regulatory site through which the intracellular signaling cascades may act to reversibly restrict or "dampen" the conformational space of the TRPA1 channel and promote its transitions to the closed state.


Assuntos
Mutação , Serina/metabolismo , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosforilação , Conformação Proteica , Domínios Proteicos , Canal de Cátion TRPA1/genética
11.
Pharmacogenomics ; 21(11): 735-749, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32615857

RESUMO

Aim: We studied the influence of coffee consumption on the therapeutic effect of methotrexate (MTX) in patients with rheumatoid arthritis (RA) sorted according to ADORA2A genotypes. Patients & methods: 82 RA patients were dichotomized according to caffeine intake with a threshold of 700 mg/week. Disease activity score 28 (DAS28) was applied (>3.2: high; <3.2: low or remission). Patients were genotyped using quantitative PCR allelic discrimination. Results: We found significantly higher risk of RA in patients with higher caffeine intake and the CT genotype of ADOARA2A rs2298383, rs3761422 and rs2267076 SNPs. The CC genotype of ADORA2A rs2236624 SNP in patients with lower caffeine intake treated with MTX is significantly protective. Conclusion:ADORA2A genotypes and coffee intake influence risk of RA and efficacy of it MTX treatment.


Assuntos
Adenosina/genética , Adenosina/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Café/metabolismo , Receptor A2A de Adenosina/genética , Adulto , Antirreumáticos/metabolismo , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Café/efeitos adversos , Estudos Transversais , Feminino , Humanos , Masculino , Metotrexato/metabolismo , Metotrexato/uso terapêutico , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
12.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560560

RESUMO

Molecular determinants of the binding of various endogenous modulators to transient receptor potential (TRP) channels are crucial for the understanding of necessary cellular pathways, as well as new paths for rational drug designs. The aim of this study was to characterise interactions between the TRP cation channel subfamily melastatin member 4 (TRPM4) and endogenous intracellular modulators-calcium-binding proteins (calmodulin (CaM) and S100A1) and phosphatidylinositol 4, 5-bisphosphate (PIP2). We have found binding epitopes at the N- and C-termini of TRPM4 shared by CaM, S100A1 and PIP2. The binding affinities of short peptides representing the binding epitopes of N- and C-termini were measured by means of fluorescence anisotropy (FA). The importance of representative basic amino acids and their combinations from both peptides for the binding of endogenous TRPM4 modulators was proved using point alanine-scanning mutagenesis. In silico protein-protein docking of both peptides to CaM and S100A1 and extensive molecular dynamics (MD) simulations enabled the description of key stabilising interactions at the atomic level. Recently solved cryo-Electron Microscopy (EM) structures made it possible to put our findings into the context of the entire TRPM4 channel and to deduce how the binding of these endogenous modulators could allosterically affect the gating of TRPM4. Moreover, both identified binding epitopes seem to be ideally positioned to mediate the involvement of TRPM4 in higher-order hetero-multimeric complexes with important physiological functions.


Assuntos
Aquaporinas/metabolismo , Sítios de Ligação , Calmodulina/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas S100/metabolismo , Canais de Cátion TRPM/metabolismo , Sequência de Aminoácidos , Aquaporinas/química , Calmodulina/química , Humanos , Cinética , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fragmentos de Peptídeos , Ligação Proteica , Conformação Proteica , Proteínas S100/química , Relação Estrutura-Atividade , Canais de Cátion TRPM/química
13.
Front Physiol ; 11: 189, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226391

RESUMO

Our understanding of the general principles of the polymodal regulation of transient receptor potential (TRP) ion channels has grown impressively in recent years as a result of intense efforts in protein structure determination by cryo-electron microscopy. In particular, the high-resolution structures of various TRP channels captured in different conformations, a number of them determined in a membrane mimetic environment, have yielded valuable insights into their architecture, gating properties and the sites of their interactions with annular and regulatory lipids. The correct repertoire of these channels is, however, organized by supramolecular complexes that involve the localization of signaling proteins to sites of action, ensuring the specificity and speed of signal transduction events. As such, TRP ankyrin 1 (TRPA1), a major player involved in various pain conditions, localizes into cholesterol-rich sensory membrane microdomains, physically interacts with calmodulin, associates with the scaffolding A-kinase anchoring protein (AKAP) and forms functional complexes with the related TRPV1 channel. This perspective will contextualize the recent biochemical and functional studies with emerging structural data with the aim of enabling a more thorough interpretation of the results, which may ultimately help to understand the roles of TRPA1 under various physiological and pathophysiological pain conditions. We demonstrate that an alteration to the putative lipid-binding site containing a residue polymorphism associated with human asthma affects the cold sensitivity of TRPA1. Moreover, we present evidence that TRPA1 can interact with AKAP to prime the channel for opening. The structural bases underlying these interactions remain unclear and are definitely worth the attention of future studies.

14.
EMBO J ; 39(3): e102500, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31840842

RESUMO

RNase J1 is the major 5'-to-3' bacterial exoribonuclease. We demonstrate that in its absence, RNA polymerases (RNAPs) are redistributed on DNA, with increased RNAP occupancy on some genes without a parallel increase in transcriptional output. This suggests that some of these RNAPs represent stalled, non-transcribing complexes. We show that RNase J1 is able to resolve these stalled RNAP complexes by a "torpedo" mechanism, whereby RNase J1 degrades the nascent RNA and causes the transcription complex to disassemble upon collision with RNAP. A heterologous enzyme, yeast Xrn1 (5'-to-3' exonuclease), is less efficient than RNase J1 in resolving stalled Bacillus subtilis RNAP, suggesting that the effect is RNase-specific. Our results thus reveal a novel general principle, whereby an RNase can participate in genome-wide surveillance of stalled RNAP complexes, preventing potentially deleterious transcription-replication collisions.


Assuntos
Bacillus subtilis/enzimologia , Exorribonucleases/metabolismo , RNA Mensageiro/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , Transcrição Gênica
15.
Cells ; 9(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878344

RESUMO

Transient receptor potential ankyrin 1 channel (TRPA1) serves as a key sensor for reactive electrophilic compounds across all species. Its sensitivity to temperature, however, differs among species, a variability that has been attributed to an evolutionary divergence. Mouse TRPA1 was implicated in noxious cold detection but was later also identified as one of the prime noxious heat sensors. Moreover, human TRPA1, originally considered to be temperature-insensitive, turned out to act as an intrinsic bidirectional thermosensor that is capable of sensing both cold and heat. Using electrophysiology and modeling, we compare the properties of human and mouse TRPA1, and we demonstrate that both orthologues are activated by heat, and their kinetically distinct components of voltage-dependent gating are differentially modulated by heat and cold. Furthermore, we show that both orthologues can be strongly activated by cold after the concurrent application of voltage and heat. We propose an allosteric mechanism that could account for the variability in TRPA1 temperature responsiveness.


Assuntos
Canal de Cátion TRPA1/metabolismo , Sequência de Aminoácidos , Animais , Temperatura Baixa , Eletrofisiologia/métodos , Células HEK293 , Temperatura Alta , Humanos , Camundongos , Modelos Biológicos , Especificidade da Espécie , Canais de Ânion Dependentes de Voltagem/metabolismo , Canais de Ânion Dependentes de Voltagem/fisiologia
16.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426314

RESUMO

The vanilloid transient receptor potential channel TRPV3 is a putative molecular thermosensor widely considered to be involved in cutaneous sensation, skin homeostasis, nociception, and pruritus. Repeated stimulation of TRPV3 by high temperatures above 50 °C progressively increases its responses and shifts the activation threshold to physiological temperatures. This use-dependence does not occur in the related heat-sensitive TRPV1 channel in which responses decrease, and the activation threshold is retained above 40 °C during activations. By combining structure-based mutagenesis, electrophysiology, and molecular modeling, we showed that chimeric replacement of the residues from the TRPV3 cytoplasmic inter-subunit interface (N251-E257) with the homologous residues of TRPV1 resulted in channels that, similarly to TRPV1, exhibited a lowered thermal threshold, were sensitized, and failed to close completely after intense stimulation. Crosslinking of this interface by the engineered disulfide bridge between substituted cysteines F259C and V385C (or, to a lesser extent, Y382C) locked the channel in an open state. On the other hand, mutation of a single residue within this region (E736) resulted in heat resistant channels. We propose that alterations in the cytoplasmic inter-subunit interface produce shifts in the channel gating equilibrium and that this domain is critical for the use-dependence of the heat sensitivity of TRPV3.


Assuntos
Citoplasma/metabolismo , Canais de Cátion TRPV/metabolismo , Células HEK293 , Temperatura Alta , Humanos , Simulação de Dinâmica Molecular , Mutação , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Canais de Cátion TRPV/química , Canais de Cátion TRPV/genética
17.
J Clin Med ; 8(5)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035618

RESUMO

Polymyalgia rheumatica (PMR) and giant cell arteritis (GCA) are closely related chronic inflammatory diseases. Glucocorticoids (GCs) are first-choice drugs for PMR and GCA, although some patients show poor responsiveness to the initial GC regimen or experience flares after GC tapering. To date, no valid biomarkers have been found to predict which patients are at most risk for developing GC resistance. In this review, we summarize PMR- and GCA-related gene polymorphisms and we associate these gene variants with GC resistance and therapeutic outcomes. A limited number of GC resistance associated-polymorphisms have been published so far, mostly related to HLA-DRB1*04 allele. Other genes such ICAM-1, TLR4 and 9, VEGF, and INFG may play a role, although discrepancies are often found among different populations. We conclude that more studies are required to identify reliable biomarkers of GC resistance. Such biomarkers could help distinguish non-responders from responders to GC treatment, with concomitant consequences for therapeutic strategy.

18.
J Bacteriol ; 201(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30478083

RESUMO

Bacterial RNA polymerase (RNAP) is essential for gene expression and as such is a valid drug target. Hence, it is imperative to know its structure and dynamics. Here, we present two as-yet-unreported forms of Mycobacterium smegmatis RNAP: core and holoenzyme containing σA but no other factors. Each form was detected by cryo-electron microscopy in two major conformations. Comparisons of these structures with known structures of other RNAPs reveal a high degree of conformational flexibility of the mycobacterial enzyme and confirm that region 1.1 of σA is directed into the primary channel of RNAP. Taken together, we describe the conformational changes of unrestrained mycobacterial RNAP.IMPORTANCE We describe here three-dimensional structures of core and holoenzyme forms of mycobacterial RNA polymerase (RNAP) solved by cryo-electron microscopy. These structures fill the thus-far-empty spots in the gallery of the pivotal forms of mycobacterial RNAP and illuminate the extent of conformational dynamics of this enzyme. The presented findings may facilitate future designs of antimycobacterial drugs targeting RNAP.


Assuntos
RNA Polimerases Dirigidas por DNA/química , Holoenzimas/química , Mycobacterium smegmatis/enzimologia , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/ultraestrutura , Holoenzimas/ultraestrutura , Conformação Proteica
19.
Org Biomol Chem ; 16(45): 8824-8830, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30411775

RESUMO

The use of templates able to control the assembly and disassembly of supramolecular biopolymers is an attractive approach with applications ranging from engineering new biopolymers to the modulation of complex biological systems. Self-assembled nucleic acid-based systems hold thus substantive potential for the construction of well-defined and stimuli-responsive molecular architectures. We report here for the first time the synthesis of a 5'-boronoribonucleotidic phosphoramidite building block, its incorporation at the 5' extremities of RNA sequences, and its ability to generate boronate internucleosidic linkages by RNA- and DNA-templated ligation. Moreover, melting denaturation studies also revealed that 5'-boronic acid ended RNA sequences are able to promote the formation of RNA loops in the presence of RNA templating partners. Molecular-dynamics (MD) simulations were used to model the structural parameters governing these processes.


Assuntos
Ácidos Borônicos/química , Conformação de Ácido Nucleico , Nucleosídeos/química , RNA/química , Sequência de Bases , Simulação de Dinâmica Molecular , RNA/genética
20.
Mol Cell ; 70(3): 553-564.e9, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681497

RESUMO

Nucleoside-containing metabolites such as NAD+ can be incorporated as 5' caps on RNA by serving as non-canonical initiating nucleotides (NCINs) for transcription initiation by RNA polymerase (RNAP). Here, we report CapZyme-seq, a high-throughput-sequencing method that employs NCIN-decapping enzymes NudC and Rai1 to detect and quantify NCIN-capped RNA. By combining CapZyme-seq with multiplexed transcriptomics, we determine efficiencies of NAD+ capping by Escherichia coli RNAP for ∼16,000 promoter sequences. The results define preferred transcription start site (TSS) positions for NAD+ capping and define a consensus promoter sequence for NAD+ capping: HRRASWW (TSS underlined). By applying CapZyme-seq to E. coli total cellular RNA, we establish that sequence determinants for NCIN capping in vivo match the NAD+-capping consensus defined in vitro, and we identify and quantify NCIN-capped small RNAs (sRNAs). Our findings define the promoter-sequence determinants for NCIN capping with NAD+ and provide a general method for analysis of NCIN capping in vitro and in vivo.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , NAD/metabolismo , Regiões Promotoras Genéticas/genética , Capuzes de RNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica/genética , Nucleotídeos/genética , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA