Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39203307

RESUMO

In this paper, the morphological, micromechanical and tribological characteristics of the Ti-6Al-4V ELI alloy after thermal oxidation (TO) were identified. TO was carried out at temperatures of 848 K, 898 K and 948 K over a period of 50 h. Microscopic examination revealed that an increase in temperature resulted in an improved uniformity of coverage and an increased oxide grain size. Micromechanical tests showed that TO of the Ti-6Al-4V ELI alloy led to an increase in hardness and deformation resistance. Following oxidation, a decrease (by approximately 10-22%) was observed in the total mechanical work of indentation, Wtotal, compared to the as-received material. The formation of protective oxide films on the Ti-6Al-4V ELI alloy also led to the improvement of tribological characteristics, both when tested under dry friction conditions and in Ringer's solution. The sliding wear resistance increased with an increase in the oxidation temperature. However, a greater degree of wear reduction (by approximately 30-50%) was found for the lubricated contact in comparison with the dry friction tests. Surface roughness also increased with the increase in temperature.

2.
J Funct Biomater ; 15(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39057310

RESUMO

Medicine is looking for solutions to help implant patients recover more smoothly. The porous implants promote osteointegration, thereby providing better stabilization. Introducing porosity into metallic implants enhances their biocompatibility and facilitates osteointegration. The introduction of porosity is also associated with a reduction in Young's modulus, which reduces the risk of tissue outgrowth around the implant. However, the risk of chronic inflammation remains a concern, necessitating the development of coatings to mitigate adverse reactions. An interesting biomaterial for such modifications is chitosan, which has antimicrobial, antifungal, and osteointegration properties. In the present work, a porous titanium biomaterial was obtained by powder metallurgy, and electrophoretic deposition of chitosan coatings was used to modify its surface. This study investigated the influence of ethanol content in the deposition solution on the quality of chitosan coatings. The EPD process facilitates the control of coating thickness and morphology, with higher voltages resulting in thicker coatings and increased pore formation. Ethanol concentration in the solution affects coating quality, with higher concentrations leading to cracking and peeling. Optimal coating conditions (30 min/10 V) yield high-quality coatings, demonstrating excellent cell viability and negligible cytotoxicity. The GIXD and ATR-FTIR analysis confirmed the presence of deposited chitosan coatings on Ti substrates. The microstructure of the chitosan coatings was examined by scanning electron microscopy. Biological tests showed no cytotoxicity of the obtained materials, which allows for further research and the possibility of their use in medicine. In conclusion, EPD offers a viable method for producing chitosan-based coatings with controlled properties for biomedical applications, ensuring enhanced patient outcomes and implant performance.

3.
Materials (Basel) ; 17(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39063775

RESUMO

Considering the high demand for innovative solutions in medicine, a major increase in interest in biomaterials research has been noticed, with the most significant advancements in metals and their alloys. Titanium-based alloys are one of the most recognised in the scientific community but do not represent the only way to achieve optimal results. Zirconium alloys for medical applications are a novelty with significant research potential based on their outstanding properties, which may be of value for medicine. The aim of the present study was to obtain new biomedical Zr-Nb-Mo alloys with varying ratios of their respective elements-Zr and Mo-using combined powder metallurgy (PM) and arc melting (VAM) methods. The obtained samples underwent microstructure analysis using an optical microscope (OM) and a scanning electron microscope (SEM). The study of element distribution was conducted with energy dispersive spectroscopy (EDS), whereas the phase composition was determined using X-ray diffraction (XRD). Mechanical properties were examined with a Micro Combi Tester MCT3, whereas tribological properties were assessed with a TRN Tribometer, and Ringer's solution was used as a lubricant. Additionally, the wear tracks of the studied samples were observed using the SEM. The research results indicated that increased Mo content conduced to microstructure refinement and homogeneity. Furthermore, the higher content of this element contributed to the growth of the HVIT, HIT, and EIT parameters, together with the improvement in the tribological performance of the alloys. XRD analysis revealed that the obtained samples were multiphase, and raising the Mo addition promoted the formation of new phases, including a ternary phase-Zr0.9Nb0.66Mo1.44 (Fd3¯m). The chemical composition study showed uneven distribution of niobium and areas of uneven mutual distribution of zirconium and molybdenum.

4.
Materials (Basel) ; 17(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730818

RESUMO

This paper presents the results of tribological tests on WE43 and WE54 magnesium alloys with rare earth metals performed in linear reciprocating motion for four different material couples (AISI 316-L steel, silicon nitride-Si3N4, WC tungsten carbide, and zirconium dioxide-ZrO2). Additionally, magnesium alloys were subjected to a complex heat treatment consisting of precipitation hardening combined with a deep cryogenic treatment. The study presents the effect of deep cryogenic treatment combined with precipitation hardening on the tribological properties of WE43 and WE54 alloys. Tribological tests revealed the most advantageous results for the magnesium alloy-AISI 316-L steel friction node. For both alloys tested after heat treatment, a nearly 2-fold reduction in specific wear rate has been achieved. Furthermore, microscopic examinations of the wear track areas and wear products were performed, and the wear mechanisms and types of wear products occurring in linear reciprocating friction were determined. Wear measurements were taken using the 3D profilometric method and compared with the results obtained from calculations performed in accordance with ASTM G133 and ASTM D7755, which were modified to improve the accuracy of the calculation results (the number of measured profiles was increased from four to eight). Appropriately selected calculation methods allow for obtaining reliable tribological test results and enabling the verification of both the most advantageous heat treatment variant and material couple, which results in an increase in the durability of the tested alloys.

5.
Materials (Basel) ; 17(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38473657

RESUMO

The main aim of this study was to assess the impact of the environment on the mechanical and tribological properties of glass-carbomer cements used in dentistry. The properties of the Glass Cements Polyalkene (GCP) Glass Fill material, belonging to glass-polyalkene cements, were tested after placing it in various environments: air, distilled water, artificial saliva simulating a neutral environment (pH = 7), and simulating inflammation (pH = 4). The research material included four samples and a two-year reference material. The analysis of volumetric consumption and the assessment of the impact of solubility on the stability of glass-carbomer cements were carried out using tribological measurements and Vickers hardness measurements. In addition, microstructural characterization of the materials was performed using scanning electron microscopy (SEM). It was observed that the lowest wear (0.04%), the most stable microstructure, and the lowest average hardness (21.52 HV 0.1) were exhibited by the material stored in artificial saliva simulating a neutral environment (pH = 7). The least stable microstructure and statistically the highest hardness (77.3 HV 0.1) was observed in the test sample, which was stored in air for two years and then in distilled water. The highest consumption (0.11%) was recorded in the case of cement placed in artificial saliva simulating inflammation (pH = 4). The results obtained in this study indicate specific trends in the influence of the environment in which the tested cement is located, such as air, distilled water, air/distilled water, artificial saliva simulating a neutral environment, and simulating inflammation, on its structure, hardness, and wear.

6.
Materials (Basel) ; 16(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068191

RESUMO

This paper examines the optimal aging temperature of WE43 alloy that has undergone precipitation hardening in conjunction with deep cryogenic treatment. The microstructure and phase composition were investigated, a microanalysis of the chemical composition was performed, and instrumental indentation tests were performed to determine the parameters of the micro-mechanical properties of the alloy after different heat treatment variants. It has been proven that a decrease in the aging temperature from 250 °C to 225 °C and the introduction of a deep cryogenic treatment lead to favorable changes in the microstructure of the alloy (reduction in grain size, increase in the number, and change in the type of ß-phase precipitates). The changes in the alloy structure achieved by lowering the aging temperature contribute to the improvement of the micromechanical properties of the test material. The most advantageous results were recorded for an alloy subjected to solution treatment and aged at 225 °C for 24 h with deep cryogenic treatment: a 30% increase in hardness, a 10% increase in Young's modulus, an improvement in elastic properties, and increased resistance to deformation of the alloy were shown compared to the initial (as-received) state. Raising the aging temperature to 250 °C leads to a phenomenon known as alloy overaging for both alloys after classical precipitation hardening and after deep cryogenic treatment. The results indicate the significant effectiveness of the proposed heat treatment in improving the service life of the Mg-Y-Nd-Zr (WE43) alloy.

7.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446899

RESUMO

Difficult-to-treat bone damage resulting from metabolic bone diseases, mechanical injuries, or tumor resection requires support in the form of biomaterials. The aim of this research was to optimize the concentration of individual components of polymer-ceramic nanocomposite granules (nanofilled polymer composites) for application in orthopedics and maxillofacial surgery to fill small bone defects and stimulate the regeneration process. Two types of granules were made using nanohydroxyapatite (nanoHA) and chitosan-based matrix (agarose/chitosan or curdlan/chitosan), which served as binder for ceramic nanopowder. Different concentrations of the components (nanoHA and curdlan), foaming agent (sodium bicarbonate-NaHCO3), and chitosan solvent (acetic acid-CH3COOH) were tested during the production process. Agarose and chitosan concentrations were fixed to be 5% w/v and 2% w/v, respectively, based on our previous research. Subsequently, the produced granules were subjected to cytotoxicity testing (indirect and direct contact methods), microhardness testing (Young's modulus evaluation), and microstructure analysis (porosity, specific surface area, and surface roughness) in order to identify the biomaterial with the most favorable properties. The results demonstrated only slight differences among the resultant granules with respect to their microstructural, mechanical, and biological properties. All variants of the biomaterials were non-toxic to a mouse preosteoblast cell line (MC3T3-E1), supported cell growth on their surface, had high porosity (46-51%), and showed relatively high specific surface area (25-33 m2/g) and Young's modulus values (2-10 GPa). Apart from biomaterials containing 8% w/v curdlan, all samples were predominantly characterized by mesoporosity. Nevertheless, materials with the greatest biomedical potential were obtained using 5% w/v agarose, 2% w/v chitosan, and 50% or 70% w/v nanoHA when the chitosan solvent/foaming agent ratio was equal to 2:2. In the case of the granules containing curdlan/chitosan matrix, the most optimal composition was as follows: 2% w/v chitosan, 4% w/v curdlan, and 30% w/v nanoHA. The obtained test results indicate that both manufactured types of granules are promising implantable biomaterials for filling small bone defects that can be used in maxillofacial surgery.


Assuntos
Quitosana , Nanocompostos , Animais , Camundongos , Quitosana/farmacologia , Quitosana/química , Alicerces Teciduais/química , Polímeros , Sefarose/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Regeneração Óssea , Nanocompostos/química , Cerâmica/farmacologia , Solventes , Durapatita/química
8.
Materials (Basel) ; 16(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048837

RESUMO

Joining wires made of NiTi alloys with shape memory effect and pseudoelasticity causes many technical and structural problems. They result from unwanted phase interactions that occur in high temperatures and negatively affect the characteristics of these materials. Such obstacles are challenging in terms of welding. Hence, an attempt was made to join NiTi wires via an economical and reliable basic laser welding technique which does not require complicated equipment and gas protection. The parameters such as spot diameter and pulse time were constant and only the laser power, calculated as a percentage of the total power, was optimized. The wires were parallelly connected with overlapping seam welds 10 mm long. The welds were examined regarding their microstructure, chemical and phase composition, reversible martensitic transformation, microhardness, and pseudoelasticity. The obtained results showed that the joint was completed at the 12-14% power. The weld revealed good quality with no voids or pores. As the laser power increased, the microhardness rose from 282 (for 4%) to 321 (for 14%). The joint withstood the stress-inducing reversible martensitic transformation. As the transformation was repeated cyclically, the stress value decreased from 587 MPa (initial wire) to 507 MPa (for the 14% power welded wire).

9.
Materials (Basel) ; 15(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499977

RESUMO

The article presents the dependence of the morphology as well as micromechanical and sclerometric properties of Al2O3 layers on the parameters of anodizing of aluminum alloys. The oxide layers were produced on the EN AW-5251 aluminum alloy by means of a direct current anodizing in a three-component electrolyte. The input variables (current density and electrolyte temperature) were selected based on the overall design of the experiment. The current density was 1, 2, 3 A/dm2, and the electrolyte temperature was 283, 293, 303 K. The surface morphology was examined using a scanning electron microscope (SEM), and then the microscopic images were analyzed using a graphics program. The micromechanical and sclerometric properties were examined by determining the HIT hardness and three critical loads: Lc1 (critical load at which the first damage of the tested layers occurred-Hertz tensile cracks inside the crack), Lc2 (critical load at which the first cohesive damage of the layers occurred) and Lc3 (load at which the layers were completely damaged). Sclerometric tests with the use of scratch tests were supplemented with pictures from a scanning microscope, showing the scratches. The produced layers are characterized by a hardness above 3 GPa and a porosity of 4.9-10.3%. Such a range of porosity of the produced layers allows their wide application, both for sliding associations with polymers and for their modification.

10.
Materials (Basel) ; 15(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35591500

RESUMO

The mechanical and tribological characteristics of the Ti-6Al-7Nb alloy were investigated within a wide range of temperature and time parameters of thermal oxidation. The hardness, HIT, and indentation modulus, EIT, of the alloy in question, with and without an anti-wear oxide layer, were determined. The tribological properties of sliding couples were studied under technically dry friction conditions, using a ball-on-disc tribometer. The test pieces were non-oxidized and oxidized Ti-6Al-7Nb alloy discs, and Al2O3, ZrO2, and 100Cr6 balls were used as counter specimens. After thermal oxidation, the surface of the titanium alloy was characterized by a significantly higher hardness, HIT (8-10 GPa), compared to the surface not covered with oxide layers (3.6 GPa). The study showed that the curvature of the loading segments increased with an increasing oxidation temperature, indicating a strong positive dependence of hardness on the thermal oxidation temperature. The value of the indentation modulus, EIT, was also found to increase with the increasing oxidation temperature. The intensity of the tribological processes was strictly dependent on the oxidation parameters and the couple's material (Al2O3, ZrO2, 100Cr6). It has been shown that the thermal oxidation process makes it possible to control, within a wide range, the friction-wear characteristics of the Ti-6Al-7Nb alloy.

11.
Materials (Basel) ; 15(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35160999

RESUMO

The article presents the effect of the thermo-chemical treatment of Al2O3 layers on their nanostructure, surface morphology, chemical composition as well as their micromechanical and sclerometric properties. Oxide layers were produced on EN AW-5251 aluminium alloy (AlMg2) by the method of direct current anodizing in a three-component electrolyte. The thermo-chemical treatment was carried out in distilled water and aqueous solutions of Na2SO4·10H2O and Na2Cr2O7·2H2O. It was shown that the thermo-chemical treatment process changes the morphology of the surface of the layers (the formation of a sub-layer from the Na2SO4·10H2O and Na2Cr2O7·2H2O solutions), which directly increases the thickness of the layers by 0.37 and 1.77 µm, respectively. The thermo-chemical treatment in water also resulted in the formation of a 0.63 µm thick sub-layer. The micromechanical tests indicated a rise in the surface microhardness of the layers in the case of their thermo-chemical treatment in water and the Na2SO4·10H2O solution and a decrease in the case of the layers modified in the Na2Cr2O7·2H2O solution. The highest microhardness (7.1 GPa) was exhibited by the layer modified in the Na2SO4·10H2O solution. Scratch tests demonstrated that the thermo-chemically treated layers had better adhesive properties than the reference layer. The best scratch resistance was exhibited by the layer after thermo-chemical treatment in the Na2SO4·10H2O solution (the highest values, practically for all the critical loads) which, together with its low roughness and high load capacity, predispose it to sliding contacts.

12.
Bioelectrochemistry ; 144: 108030, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34896782

RESUMO

Current trends in the field of neural tissue engineering include the design of advanced biomaterials combining excellent electrochemical performance with versatile biological characteristics. The purpose of this work was to develop an antibacterial and neuroprotective coating based on a conducting polymer - poly(3,4-ethylenedioxypyrrole) (PEDOP), loaded with an antibiotic agent - tetracycline (Tc). Employing an electrochemical technique to immobilize Tc within a growing polymer matrix allowed to fabricate robust PEDOP/Tc coatings with a high charge storage capacity (63.65 ± 6.05 mC/cm2), drug release efficiency (629.4 µg/cm2 ± 62.7 µg/cm2), and low charge transfer resistance (2.4 ± 0.1 kΩ), able to deliver a stable electrical signal. PEDOP/Tc were found to exhibit strong antimicrobial effects against Gram-negative bacteria Escherichia coli, expressed through negligible adhesion, reduction in viability, and a characteristic elongation of bacterial cells. Cytocompatibility and neuroprotective effects were evaluated using a rat neuroblastoma B35 cell line, and were analyzed using MTT, cell cycle, and Annexin-V apoptosis assays. The presence of Tc was found to enhance neural cell viability and neurite outgrowth. The results confirmed that PEDOP/Tc can serve as an efficient neural electrode coating able to enhance charge transfer, as well as to exhibit bifunctional biological characteristics, different for eukaryotic and prokaryotic cells.


Assuntos
Polímeros
13.
Materials (Basel) ; 14(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885495

RESUMO

This study investigated the micromechanical and tribological properties of WE43 alloy (Mg-Y-Nd-Zr) alloy subjected to cryogenic treatment and precipitation hardening. Microindentation tests were carried out in the range of load from 100 to 1000 mN. The introduction of deep cryogenic treatment (DCT) was shown to increase hardness and Young's modulus, and reduce the total indentation work. As the load set during the tests increased, a gradual decrease in the measured values was observed, indicating a significant relationship between the indent size and the value of the measured parameters. Cryogenic treatment used in conjunction with precipitation hardening (after solutioning and after aging) reduces the tribological wear of the alloy. Tests have shown an almost twofold reduction in the area of the wear trace and in the volumetric wear of the alloy, as well as a more than twofold reduction in linear wear, with relatively small fluctuations in the coefficient of friction. Abrasion was the main mechanism of wear. Areas where microcutting, adhesion and plastic deformation occurred were also observed. The results indicate the significant effectiveness of the applied heat treatment in improving the service life of the WE43 alloy containing rare earth metals.

14.
Materials (Basel) ; 14(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34772133

RESUMO

In view of the aging population and various diseases worldwide, the demand for implants has been rapidly increasing. Despite the efforts of doctors, engineers, and medical companies, the fabrication of and procedures associated with implants have not yet been perfected. Therefore, a high percentage of premature implantations has been observed. The main problem with metal implants is the mechanical mismatch between human bone and the implant material. Zirconium/titanium-based materials with graded porosity and composition were prepared by powder metallurgy. The whole samples are comprised of three zones, with a radial gradient in the phase composition, microstructure, and pore structure. The samples were prepared by a three-step powder metallurgy method. The microstructure and properties were observed to change gradually with the distance from the center of the sample. The x-ray diffraction analysis and microstructure observation confirmed the formation of diffusive connections between the particular areas. Additionally, the mechanical properties of the obtained materials were checked, with respect to the distance from the center of the sample. An analysis of the corrosion properties of the obtained materials was also carried out.

15.
Polymers (Basel) ; 13(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34685330

RESUMO

This research aimed to examine the mechanical properties of polycarbonate-based composites filled with both organic and inorganic reinforcements before and after simulated environmental degradation. Series of polycarbonate-based samples were prepared in the form of thin tapes. Their rheological properties were examined. Then, the samples were exposed to artificial environmental conditions. Finally, their rheological properties were examined once more, and the results were compared with those obtained for untreated samples. This paper presents basic research on the application of inorganic fillers to polycarbonate in order to determine the influence of the filler on the behavior of the obtained material. The aim of the work was to determine the usefulness and purpose of using this type of filler in polycarbonates for applications in contact with ultraviolet radiation, especially medical applications.

16.
Materials (Basel) ; 14(13)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34279335

RESUMO

High-temperature oxidation was performed at temperatures from 600 to 750 °C over a period of 24 h and 72 h. It was shown in the study that the oxide scale became more homogeneous and covered the entire surface as the oxidation temperature increased. After oxidation over a period of 24 h, the hardness of the produced layers increased as the oxidation temperature increased (from 892.4 to 1146.6 kgf/mm2). During oxidation in a longer time variant (72 h), layers with a higher hardness were obtained (1260 kgf/mm2). Studies on friction and wear characteristics of titanium were conducted using couples with ceramic balls (Al2O3, ZrO2) and with high-carbon steel (100Cr6) balls. The oxide films produced at a temperature range of 600-750 °C led to a reduction of the wear ratio value, with the lowest one obtained in tests with the 100Cr6 steel balls. Frictional contact of Al2O3 balls with an oxidized titanium disc resulted in a reduction of the wear ratio, but only for the oxide scales produced at 600 °C (24 h, 72 h) and 650 °C (24 h). For the ZrO2 balls, an increase in the wear ratio was observed, especially when interacting with the oxide films obtained after high-temperature oxidation at 650 °C or higher temperatures. The increase in wear intensity after titanium oxidation was also observed for the 100Cr6 steel balls.

17.
Materials (Basel) ; 14(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806686

RESUMO

The paper investigates changes in the structure, microhardness, and sclerometrical and tribological properties of a Mg-Y-Nd alloy under the influence of deep cryogenic treatment (DCT) in combination with heat treatment. The solution treatment was carried out at 545 °C for 8 h, aging was carried out at 250 °C for 24 h, and the deep cryogenic treatment applied at different treatment stages was performed at -196 °C. Tests showed a significant increase in the number of ß-phase precipitates identified as Mg46.1Y6.25RE3.45 in the alloy subjected to DCT after solution treatment followed by aging. In addition, an approximately 20% reduction of the grain size was observed. Changes in the structure in the precipitation process strengthened the alloy and resulted in an increase of its hardness. At the same time, sclerometric tests allowed the micromechanism of wear and the coefficient of resistance to abrasive wear to be determined. Tribological tests showed a three-fold reduction in the volumetric wear and a considerable reduction of the friction coefficient, with the main mechanism observed during friction being abrasive wear. The most favorable properties of the alloy were obtained after precipitation hardening combined with DCT, resulting in a large increase in resistance to abrasive wear. Additionally, the formation of deep scratches in the examined material was reduced. The introduction of sub-zero treatment reduces the precipitation hardening time, and the results obtained indicate that the service life of the Mg-Y-Nd alloy can be extended.

18.
Materials (Basel) ; 13(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260652

RESUMO

This paper presents the results of research into the cyclic oxidation of titanium Grade 2. The value of titanium Grade 2 oxidation activation energy was determined based on an analysis of the Arrhenius diagram. The result was 205.3 kJ/mol. After cyclic oxidation at a temperature of 600 °C, the presence of oxides in an acicular system was observed on the surface. The specimen surface after oxidation at 650 °C was characterised by the presence of fine oxide particles, while after oxidation at 700 °C, the obtained oxide layer was composed of large oxide particles. The layers obtained after oxidation at 600 °C had the lowest thickness (1.26 and 2.12 µm), while those obtained at 700 °C had the highest thickness (5.17 and 9.45 µm). Examination of the phase composition after cyclic oxidation showed that the oxide layers obtained at temperatures of 600, 650 and 700 °C were composed of TiO2 (rutile) only. No presence of other phases was found. The oxide layers formed in the cyclic oxidation process were characterised by different thicknesses, depending on the oxidation parameters. It was found that cyclic oxidation contributed to a considerable increase in the surface hardness of titanium Grade 2.

19.
Polymers (Basel) ; 12(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731329

RESUMO

This research investigated the effect of irradiation with an electron beam energy of 10 MeV in doses of 26-156 kGy on polytetrafluoroethylene (PTFE) with a 15% and 20% graphite additive. The research has shown that mechanical (compression strength, hardness, and Young's modulus) and sclerometric (coefficient of wear micromechanism and coefficient of resistance to wear) properties improve and tribological wear decreases as graphite content increases. Electron beam irradiation increases the degree of crystallinity of both materials to a similar extent. However significant differences in the improvement of all examined properties have been demonstrated for PTFE with higher (20%) graphite content subjected to the electron beam irradiation. This polymer is characterized by higher hardness and Young's modulus, reduced susceptibility to permanent deformation, higher elasticity, compression strength, and above all, a nearly 30% reduction in tribological wear compared to PTFE with a 15% graphite additive. The most advantageous properties can be obtained for both of the examined composites after absorbing a dose of 104 kGy. The obtained results hold promise for the improvement of the operational life of friction couples which do not require lubrication, used for example in air compressors and engines, and for the possibility of application of these modified polymers. In particular PTFE with 20% graphite content, in the nuclear and space industry.

20.
Materials (Basel) ; 13(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650444

RESUMO

The tensile properties, scratch behaviors and sliding wear of an oxide scale obtained on the surface of titanium Grade 2 in the process of isothermal oxidation at 600, 700 and 800 °C were determined in the study. It was shown that the intensity of the oxidation process increased along with an increase in temperature and extension of the oxidation time, which translated directly into the thickness of the deposited oxide layers. The tests showed that isothermal oxidation had an adverse effect on the tensile properties of titanium. After oxidation, it was found that the maximum reduction in tensile strength, Rm, was approximately 17.5%, and of the yield point, Rp0.2, approximately 13.9%. Examination of scratch behaviors of the oxide scale showed that the layers obtained at temperatures of 700 (72 h) and 800 °C (2 and 6 h) had the best adhesion properties. The best resistance to scratching was exhibited by the layer obtained after 6 h oxidation at 800 °C (critical load: Lc1 = 63 N, Lc2 = 85 N). The study showed that after oxidation, a considerable reduction in wear factor of a disc made of titanium Grade 2 was observed for both the friction couples used (Al2O3, steel 100Cr6). The maximum reduction in wear factor of the oxidized titanium disc during interaction with Al2O3 balls was ca. 79%, and with 100Cr6 balls, ca. 96%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA