Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
2.
Sleep Med Rev ; 75: 101915, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38598988

RESUMO

Climate change is elevating nighttime and daytime temperatures worldwide, affecting a broad continuum of behavioral and health outcomes. Disturbed sleep is a plausible pathway linking rising ambient temperatures with several observed adverse human responses shown to increase during hot weather. This systematic review aims to provide a comprehensive overview of the literature investigating the relationship between ambient temperature and valid sleep outcomes measured in real-world settings, globally. We show that higher outdoor or indoor temperatures are generally associated with degraded sleep quality and quantity worldwide. The negative effect of heat persists across sleep measures, and is stronger during the hottest months and days, in vulnerable populations, and the warmest regions. Although we identify opportunities to strengthen the state of the science, limited evidence of fast sleep adaptation to heat suggests rising temperatures induced by climate change and urbanization pose a planetary threat to human sleep, and therefore health, performance, and wellbeing.

3.
Environ Res ; 252(Pt 3): 118913, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643821

RESUMO

Exposome studies are advancing in high-income countries to understand how multiple environmental exposures impact health. However, there is a significant research gap in low- and middle-income and tropical countries. We aimed to describe the spatiotemporal variation of the external exposome, its correlation structure between and within exposure groups, and its dimensionality. A one-year follow-up cohort study of 506 children under 5 in two cities in Colombia was conducted to evaluate asthma, acute respiratory infections, and DNA damage. We examined 48 environmental exposures during pregnancy and 168 during childhood in eight exposure groups, including atmospheric pollutants, natural spaces, meteorology, built environment, traffic, indoor exposure, and socioeconomic capital. The exposome was estimated using geographic information systems, remote sensing, spatiotemporal modeling, and questionnaires. The median age of children at study entry was 3.7 years (interquartile range: 2.9-4.3). Air pollution and natural spaces exposure decreased from pregnancy to childhood, while socioeconomic capital increased. The highest median correlations within exposure groups were observed in meteorology (r = 0.85), traffic (r = 0.83), and atmospheric pollutants (r = 0.64). Important correlations between variables from different exposure groups were found, such as atmospheric pollutants and meteorology (r = 0.76), natural spaces (r = -0.34), and the built environment (r = 0.53). Twenty principal components explained 70%, and 57 explained 95% of the total variance in the childhood exposome. Our findings show that there is an important spatiotemporal variation in the exposome of children under 5. This is the first characterization of the external exposome in urban areas of Latin America and highlights its complexity, but also the need to better characterize and understand the exposome in order to optimize its analysis and applications in local interventions aimed at improving the health conditions and well-being of the child population and contributing to environmental health decision-making.

4.
Int J Epidemiol ; 53(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38514998

RESUMO

BACKGROUND: A growing body of evidence has reported positive associations between long-term exposure to air pollution and poor COVID-19 outcomes. Inconsistent findings have been reported for short-term air pollution, mostly from ecological study designs. Using individual-level data, we studied the association between short-term variation in air pollutants [nitrogen dioxide (NO2), particulate matter with a diameter of <2.5 µm (PM2.5) and a diameter of <10 µm (PM10) and ozone (O3)] and hospital admission among individuals diagnosed with COVID-19. METHODS: The COVAIR-CAT (Air pollution in relation to COVID-19 morbidity and mortality: a large population-based cohort study in Catalonia, Spain) cohort is a large population-based cohort in Catalonia, Spain including 240 902 individuals diagnosed with COVID-19 in the primary care system from 1 March until 31 December 2020. Our outcome was hospitalization within 30 days of COVID-19 diagnosis. We used individual residential address to assign daily air-pollution exposure, estimated using machine-learning methods for spatiotemporal prediction. For each pandemic wave, we fitted Cox proportional-hazards models accounting for non-linear-distributed lagged exposure over the previous 7 days. RESULTS: Results differed considerably by pandemic wave. During the second wave, an interquartile-range increase in cumulative weekly exposure to air pollution (lag0_7) was associated with a 12% increase (95% CI: 4% to 20%) in COVID-19 hospitalizations for NO2, 8% (95% CI: 1% to 16%) for PM2.5 and 9% (95% CI: 3% to 15%) for PM10. We observed consistent positive associations for same-day (lag0) exposure, whereas lag-specific associations beyond lag0 were generally not statistically significant. CONCLUSIONS: Our study suggests positive associations between NO2, PM2.5 and PM10 and hospitalization risk among individuals diagnosed with COVID-19 during the second wave. Cumulative hazard ratios were largely driven by exposure on the same day as hospitalization.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Ozônio , Humanos , Espanha/epidemiologia , Estudos de Coortes , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Teste para COVID-19 , COVID-19/epidemiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Ozônio/efeitos adversos , Ozônio/análise , Hospitalização , Hospitais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
5.
Environ Int ; 185: 108530, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422877

RESUMO

OBJECTIVE: Factors that shape individuals' vulnerability to the effects of air pollution on COVID-19 severity remain poorly understood. We evaluated whether the association between long-term exposure to ambient NO2, PM2.5, and PM10 and COVID-19 hospitalisation differs by age, sex, individual income, area-level socioeconomic status, arterial hypertension, diabetes mellitus, and chronic obstructive pulmonary disease. METHODS: We analysed a population-based cohort of 4,639,184 adults in Catalonia, Spain, during 2020. We fitted Cox proportional hazard models adjusted for several potential confounding factors and evaluated the interaction effect between vulnerability indicators and the 2019 annual average of NO2, PM2.5, and PM10. We evaluated interaction on both additive and multiplicative scales. RESULTS: Overall, the association was additive between air pollution and the vulnerable groups. Air pollution and vulnerability indicators had a synergistic (greater than additive) effect for males and individuals with low income or living in the most deprived neighbourhoods. The Relative Excess Risk due to Interaction (RERI) was 0.21, 95 % CI, 0.15 to 0.27 for NO2 and 0.16, 95 % CI, 0.11 to 0.22 for PM2.5 for males; 0.13, 95 % CI, 0.09 to 0.18 for NO2 and 0.10, 95 % CI, 0.05 to 0.14 for PM2.5 for lower individual income and 0.17, 95 % CI, 0.12 to 0.22 for NO2 and 0.09, 95 % CI, 0.05 to 0.14 for PM2.5 for lower area-level socioeconomic status. Results for PM10 were similar to PM2.5. Results on multiplicative scale were inconsistent. CONCLUSIONS: Long-term exposure to air pollution had a larger synergistic effect on COVID-19 hospitalisation for males and those with lower individual- and area-level socioeconomic status.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Masculino , Adulto , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , COVID-19/epidemiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Hospitalização
6.
Environ Res ; 247: 118195, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237751

RESUMO

INTRODUCTION: Patients with chronic obstructive pulmonary disease (COPD) accumulate low levels of physical activity. How environmental factors affect their physical activity in the short-term is uncertain. AIM: to assess the short-term effects of air pollution and weather on physical activity levels in COPD patients. METHODS: This multi-center panel study assessed 408 COPD patients from Catalonia (Spain). Daily physical activity (i.e., steps, time in moderate-to-vigorous physical activity (MVPA), locomotion intensity, and sedentary time) was recorded in two 7-day periods, one year apart, using the Dynaport MoveMonitor. Air pollution (nitrogen dioxide (NO2), particulate matter below 10 µm (PM10) and a marker of black carbon (absorbance of PM2.5: PM2.5ABS), and weather (average and maximum temperature, and rainfall) were estimated the same day (lag zero) and up to 5 days prior to each assessment (lags 1-5). Mixed-effect distributed lag linear regression models were adjusted for age, sex, weekday, public holidays, greenness, season, and social class, with patient and city as random effects. RESULTS: Patients (85% male) were on average (mean ± SD) 68 ± 9 years old with a post-bronchodilator forced expiratory volume in 1 s (FEV1) of 57 ± 18% predicted. Higher NO2, PM10 and PM2.5ABS levels at lag four were associated with fewer steps, less time in MVPA, reduced locomotion intensity, and longer sedentary time (e.g., coefficient (95% CI) of -60 (-105, -15) steps per 10 µg/m3 increase in NO2). Higher average and maximum temperatures at lag zero were related to more steps and time in MVPA, and less sedentary time (e.g., +85 (15, 154) steps per degree Celsius). Higher rainfall at lag zero was related to fewer steps and more sedentary time. CONCLUSION: Air pollution affects the amount and intensity of physical activity performed on the following days in COPD patients, whereas weather affects the amount of physical activity performed on the same day.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doença Pulmonar Obstrutiva Crônica , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Poluentes Atmosféricos/toxicidade , Dióxido de Nitrogênio/análise , Poluição do Ar/análise , Tempo (Meteorologia) , Material Particulado/análise , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Exposição Ambiental
7.
Lancet Reg Health Eur ; 36: 100779, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38188278

RESUMO

Background: Daily time-series regression models are commonly used to estimate the lagged nonlinear relation between temperature and mortality. A major impediment to this type of analysis is the restricted access to daily health records. The use of weekly and monthly data represents a possible solution unexplored to date. Methods: We temporally aggregated daily temperatures and mortality records from 147 contiguous regions in 16 European countries, representing their entire population of over 400 million people. We estimated temperature-lag-mortality relationships by using standard time-series quasi-Poisson regression models applied to daily data, and compared the results with those obtained with different degrees of temporal aggregation. Findings: We observed progressively larger differences in the epidemiological estimates with the degree of temporal data aggregation. The daily data model estimated an annual cold and heat-related mortality of 290,104 (213,745-359,636) and 39,434 (30,782-47,084) deaths, respectively, and the weekly model underestimated these numbers by 8.56% and 21.56%. Importantly, differences were systematically smaller during extreme cold and heat periods, such as the summer of 2003, with an underestimation of only 4.62% in the weekly data model. We applied this framework to infer that the heat-related mortality burden during the year 2022 in Europe may have exceeded the 70,000 deaths. Interpretation: The present work represents a first reference study validating the use of weekly time series as an approximation to the short-term effects of cold and heat on human mortality. This approach can be adopted to complement access-restricted data networks, and facilitate data access for research, translation and policy-making. Funding: The study was supported by the ERC Consolidator Grant EARLY-ADAPT (https://www.early-adapt.eu/), and the ERC Proof-of-Concept Grants HHS-EWS and FORECAST-AIR.

8.
Environ Health ; 23(1): 13, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38281011

RESUMO

Once an external factor has been deemed likely to influence human health and a dose response function is available, an assessment of its health impact or that of policies aimed at influencing this and possibly other factors in a specific population can be obtained through a quantitative risk assessment, or health impact assessment (HIA) study. The health impact is usually expressed as a number of disease cases or disability-adjusted life-years (DALYs) attributable to or expected from the exposure or policy. We review the methodology of quantitative risk assessment studies based on human data. The main steps of such studies include definition of counterfactual scenarios related to the exposure or policy, exposure(s) assessment, quantification of risks (usually relying on literature-based dose response functions), possibly economic assessment, followed by uncertainty analyses. We discuss issues and make recommendations relative to the accuracy and geographic scale at which factors are assessed, which can strongly influence the study results. If several factors are considered simultaneously, then correlation, mutual influences and possibly synergy between them should be taken into account. Gaps or issues in the methodology of quantitative risk assessment studies include 1) proposing a formal approach to the quantitative handling of the level of evidence regarding each exposure-health pair (essential to consider emerging factors); 2) contrasting risk assessment based on human dose-response functions with that relying on toxicological data; 3) clarification of terminology of health impact assessment and human-based risk assessment studies, which are actually very similar, and 4) other technical issues related to the simultaneous consideration of several factors, in particular when they are causally linked.


Assuntos
Projetos de Pesquisa , Medição de Risco , Medição de Risco/métodos
12.
Environ Res ; 242: 117774, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036203

RESUMO

INTRODUCTION: Previous studies identified some environmental and lifestyle factors independently associated with children respiratory health, but few focused on exposure mixture effects. This study aimed at identifying, in pregnancy and in childhood, combined urban and lifestyle environment profiles associated with respiratory health in children. METHODS: This study is based on the European Human Early-Life Exposome (HELIX) project, combining six birth cohorts. Associations between profiles of pregnancy (38 exposures) and childhood (84 exposures) urban and lifestyle factors, identified by clustering analysis, and respiratory health were estimated by regression models adjusted for confounders. RESULTS: Among the 1033 included children (mean ± standard-deviation (SD) age: 8.2 ± 1.6 years old, 47% girls) the mean ± SD forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) were 99 ± 13% and 101 ± 14%, respectively, and 12%, 12% and 24% reported ever-asthma, wheezing and rhinitis, respectively. Four profiles of pregnancy exposures and four profiles of childhood exposures were identified. Compared to the reference childhood exposure profile (low exposures), two exposure profiles were associated with lower levels of FEV1. One profile was characterized by few natural spaces in the surroundings and high exposure to the built environment and road traffic. The second profile was characterized by high exposure to meteorological factors and low levels of all other exposures and was also associated with an increased risk of ever-asthma and wheezing. A pregnancy exposure profile characterized by high exposure levels to all risk factors, but a healthy maternal lifestyle, was associated with a lower risk of wheezing and rhinitis in children, compared to the reference pregnancy profile (low exposures). CONCLUSION: This comprehensive approach revealed pregnancy and childhood profiles of urban and lifestyle exposures associated with lung function and/or respiratory conditions in children. Our findings highlight the need to pursue the study of combined exposures to improve prevention strategies for multifactorial diseases such as asthma.


Assuntos
Asma , Rinite , Criança , Feminino , Gravidez , Humanos , Masculino , Sons Respiratórios , Exposição Ambiental/análise , Asma/epidemiologia , Asma/etiologia , Estilo de Vida
13.
Environ Int ; 182: 108344, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38016387

RESUMO

Outcome-wide analysis can offer several benefits, including increased power to detect weak signals and the ability to identify exposures with multiple effects on health, which may be good targets for preventive measures. Recently, advanced statistical multivariate techniques for outcome-wide analysis have been developed, but they have been rarely applied to exposome analysis. In this work, we provide an overview of a selection of methods that are well-suited for outcome-wide exposome analysis and are implemented in the R statistical software. Our work brings together six different methods presenting innovative solutions for typical problems arising from outcome-wide approaches in the context of the exposome, including dependencies among outcomes, high dimensionality, mixed-type outcomes, missing data records, and confounding effects. The identified methods can be grouped into four main categories: regularized multivariate regression techniques, multi-task learning approaches, dimensionality reduction approaches, and bayesian extensions of the multivariate regression framework. Here, we compare each technique presenting its main rationale, strengths, and limitations, and provide codes and guidelines for their application to exposome data. Additionally, we apply all selected methods to a real exposome dataset from the Human Early-Life Exposome (HELIX) project, demonstrating their suitability for exposome research. Although the choice of the best method will always depend on the challenges to be faced in each application, for an exposome-like analysis we find dimensionality reduction and bayesian methods such as reduced rank regression (RRR) or multivariate bayesian shrinkage priors (MBSP) particularly useful, given their ability to deal with critical issues such as collinearity, high-dimensionality, missing data or quantification of uncertainty.


Assuntos
Expossoma , Humanos , Exposição Ambiental , Teorema de Bayes
14.
Environ Sci Technol ; 57(43): 16232-16243, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844068

RESUMO

The exposome concept aims to consider all environmental stressors simultaneously. The dimension of the data and the correlation that may exist between exposures lead to various statistical challenges. Some methodological studies have provided insight regarding the efficiency of specific modeling approaches in the context of exposome data assessed once for each subject. However, few studies have considered the situation in which environmental exposures are assessed repeatedly. Here, we conduct a simulation study to compare the performance of statistical approaches to assess exposome-health associations in the context of multiple exposure variables. Different scenarios were tested, assuming different types and numbers of exposure-outcome causal relationships. An application study using real data collected within the INMA mother-child cohort (Spain) is also presented. In the simulation experiment, assessed methods showed varying performance across scenarios, making it challenging to recommend a one-size-fits-all strategy. Generally, methods such as sparse partial least-squares and the deletion-substitution-addition algorithm tended to outperform the other tested methods (ExWAS, Elastic-Net, DLNM, or sNPLS). Notably, as the number of true predictors increased, the performance of all methods declined. The absence of a clearly superior approach underscores the additional challenges posed by repeated exposome data, such as the presence of more complex correlation structures and interdependencies between variables, and highlights that careful consideration is essential when selecting the appropriate statistical method. In this regard, we provide recommendations based on the expected scenario. Given the heightened risk of reporting false positive or negative associations when applying these techniques to repeated exposome data, we advise interpreting the results with caution, particularly in compromised contexts such as those with a limited sample size.


Assuntos
Expossoma , Humanos , Exposição Ambiental , Espanha , Algoritmos
15.
Epidemiology ; 34(6): 873-878, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37708493

RESUMO

The analysis of time series studies linking daily counts of a health indicator with environmental variables (e.g., mortality or hospital admissions with air pollution concentrations or temperature; or motor vehicle crashes with temperature) is usually conducted with Poisson regression models controlling for long-term and seasonal trends using temporal strata. When the study includes multiple zones, analysts usually apply a two-stage approach: first, each zone is analyzed separately, and the resulting zone-specific estimates are then combined using meta-analysis. This approach allows zone-specific control for trends. A one-stage approach uses spatio-temporal strata and could be seen as a particular case of the case-time series framework recently proposed. However, the number of strata can escalate very rapidly in a long time series with many zones. A computationally efficient alternative is to fit a conditional Poisson regression model, avoiding the estimation of the nuisance strata. To allow for zone-specific effects, we propose a conditional Poisson regression model with a random slope, although available frequentist software does not implement this model. Here, we implement our approach in the Bayesian paradigm, which also facilitates the inclusion of spatial patterns in the effect of interest. We also provide a possible extension to deal with overdispersed data. We first introduce the equations of the framework and then illustrate their application to data from a previously published study on the effects of temperature on the risk of motor vehicle crashes. We provide R code and a semi-synthetic dataset to reproduce all analyses presented.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Fatores de Tempo , Teorema de Bayes , Poluição do Ar/análise , Temperatura , Software , Poluentes Atmosféricos/análise
16.
Environ Pollut ; 337: 122501, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37690467

RESUMO

Environmental epidemiology studies require models of multiple exposures to adjust for co-exposure and explore interactions. We estimated spatiotemporal exposure to surface air temperature and pollution (PM2.5, PM10, NO2, O3) at high spatiotemporal resolution (daily, 250 m) for 2018-2020 in Catalonia. Innovations include the use of TROPOMI products, a data split for remote sensing gap-filling evaluation, estimation of prediction uncertainty, and use of explainable machine learning. We compiled meteorological and air quality station measurements, climate and atmospheric composition reanalyses, remote sensing products, and other spatiotemporal data. We performed gap-filling of remotely-sensed products using Random Forest (RF) models and validated them using Out-Of-Bag (OOB) samples and a structured data split. The exposure modelling workflow consisted of: 1) PM2.5 station imputation with PM10 data; 2) quantile RF (QRF) model fitting; and 3) geostatistical residual spatial interpolation. Prediction uncertainty was estimated using QRF. SHAP values were used to examine variable importance and the fitted relationships. Model performance was assessed via nested CV at the station level. Evaluation of the gap-filling models using the structured split showed error underestimation when using OOB. Temperature models had the best performance (R2 =0.98) followed by the gaseous air pollutants (R2 =0.81 for NO2 and 0.86 for O3), while the performance of the PM2.5 and PM10 models was lower (R2 =0.57 and 0.63 respectively). Predicted exposure patterns captured urban heat island effects, dust advection events, and NO2 hotspots. SHAP values estimated a high importance of TROPOMI tropospheric NO2 columns in PM and NO2 models, and confirmed that the fitted associations conformed to prior knowledge. Our work highlights the importance of correctly validating gap-filling models and the potential of TROPOMI measurements. Moderate performance in PM models can be partly explained by the poor station coverage. Our exposure estimates can be used in epidemiological studies potentially accounting for exposure uncertainty.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Temperatura , Monitoramento Ambiental , Dióxido de Nitrogênio/análise , Espanha , Cidades , Temperatura Alta , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Material Particulado/análise
17.
Environ Health ; 22(1): 53, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480033

RESUMO

BACKGROUND: Early-life environmental exposures are suspected to be involved in the development of chronic diseases later in life. Most studies conducted so far considered single or few exposures and single-health parameter. Our study aimed to identify a childhood general health score and assess its association with a wide range of pre- and post-natal environmental exposures. METHODS: The analysis is based on 870 children (6-12 years) from six European birth cohorts participating in the Human Early-Life Exposome project. A total of 53 prenatal and 105 childhood environmental factors were considered, including lifestyle, social, urban and chemical exposures. We built a general health score by averaging three sub-scores (cardiometabolic, respiratory/allergy and mental) built from 15 health parameters. By construct, a child with a low score has a low general health status. Penalized multivariable regression through Least Absolute Shrinkage and Selection Operator (LASSO) was fitted in order to identify exposures associated with the general health score. FINDINGS: The results of LASSO show that a lower general health score was associated with maternal passive and active smoking during pregnancy and postnatal exposure to methylparaben, copper, indoor air pollutants, high intake of caffeinated drinks and few contacts with friends and family. Higher child's general health score was associated with prenatal exposure to a bluespace near residency and postnatal exposures to pets, cobalt, high intakes of vegetables and more physical activity. Against our hypotheses, postnatal exposure to organochlorine compounds and perfluorooctanoate were associated with a higher child's general health score. CONCLUSION: By using a general health score summarizing the child cardiometabolic, respiratory/allergy and mental health, this study reinforced previously suspected environmental factors associated with various child health parameters (e.g. tobacco, air pollutants) and identified new factors (e.g. pets, bluespace) warranting further investigations.


Assuntos
Poluentes Atmosféricos , Doenças Cardiovasculares , Hipersensibilidade , Efeitos Tardios da Exposição Pré-Natal , Criança , Gravidez , Feminino , Humanos , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Exposição Ambiental/análise , Poluentes Atmosféricos/análise , Nível de Saúde
18.
Nat Med ; 29(7): 1857-1866, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37429922

RESUMO

Over 70,000 excess deaths occurred in Europe during the summer of 2003. The resulting societal awareness led to the design and implementation of adaptation strategies to protect at-risk populations. We aimed to quantify heat-related mortality burden during the summer of 2022, the hottest season on record in Europe. We analyzed the Eurostat mortality database, which includes 45,184,044 counts of death from 823 contiguous regions in 35 European countries, representing the whole population of over 543 million people. We estimated 61,672 (95% confidence interval (CI) = 37,643-86,807) heat-related deaths in Europe between 30 May and 4 September 2022. Italy (18,010 deaths; 95% CI = 13,793-22,225), Spain (11,324; 95% CI = 7,908-14,880) and Germany (8,173; 95% CI = 5,374-11,018) had the highest summer heat-related mortality numbers, while Italy (295 deaths per million, 95% CI = 226-364), Greece (280, 95% CI = 201-355), Spain (237, 95% CI = 166-312) and Portugal (211, 95% CI = 162-255) had the highest heat-related mortality rates. Relative to population, we estimated 56% more heat-related deaths in women than men, with higher rates in men aged 0-64 (+41%) and 65-79 (+14%) years, and in women aged 80+ years (+27%). Our results call for a reevaluation and strengthening of existing heat surveillance platforms, prevention plans and long-term adaptation strategies.


Assuntos
Temperatura Alta , Mortalidade , Feminino , Humanos , Masculino , Europa (Continente)/epidemiologia , Itália/epidemiologia , Estações do Ano , Espanha/epidemiologia , Idoso de 80 Anos ou mais , Idoso , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade
19.
Environ Pollut ; 334: 122217, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467916

RESUMO

Air pollution exposure may affect child weight gain, but observational studies provide inconsistent evidence. Residential relocation can be leveraged as a natural experiment by studying changes in health outcomes after a sudden change in exposure within an individual. We aimed to evaluate whether changes in air pollution exposure due to residential relocation are associated with changes in body mass index (BMI) in children and adolescents in a natural experiment study. This population-based study included children and adolescents, between 2 and 17 years, who moved during 2011-2018 and were registered in the primary healthcare in Catalonia, Spain (N = 46,644). Outdoor air pollutants (nitrogen dioxides (NO2), particulate matter <10 µm (PM10) and <2.5 µm (PM2.5)) were estimated at residential census tract level before and after relocation; tertile cut-offs were used to define changes in exposure. Routinely measured weight and height were used to calculate age-sex-specific BMI z-scores. A minimum of 180 days after moving was considered to observe zBMI changes according to changes in exposure using linear fixed effects regression. The majority of participants (60-67% depending on the pollutant) moved to areas with similar levels of air pollution, 15-49% to less polluted, and 14-31% to more polluted areas. Moving to areas with more air pollution was associated with zBMI increases for all air pollutants (ß NO2 = 0.10(95%CI 0.09; 0.12), ß PM2.5 0.06(0.04; 0.07), ß PM10 0.08(0.06; 0.10)). Moving to similar air pollution areas was associated with decreases in zBMI for all pollutants. No associations were found for those moving to less polluted areas. Associations with moving to more polluted areas were stronger in preschool- and primary school-ages. Associations did not differ by area deprivation strata. This large, natural experiment study suggests that increases in outdoor air pollution may be associated with child weight gain, supporting ongoing efforts to lower air pollution levels.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Masculino , Feminino , Humanos , Criança , Pré-Escolar , Adolescente , Índice de Massa Corporal , Dióxido de Nitrogênio/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Aumento de Peso , Exposição Ambiental/análise
20.
Nat Commun ; 14(1): 2916, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225741

RESUMO

The association between long-term exposure to ambient air pollutants and severe COVID-19 is uncertain. We followed 4,660,502 adults from the general population in 2020 in Catalonia, Spain. Cox proportional models were fit to evaluate the association between annual averages of PM2.5, NO2, BC, and O3 at each participant's residential address and severe COVID-19. Higher exposure to PM2.5, NO2, and BC was associated with an increased risk of COVID-19 hospitalization, ICU admission, death, and hospital length of stay. An increase of 3.2 µg/m3 of PM2.5 was associated with a 19% (95% CI, 16-21) increase in hospitalizations. An increase of 16.1 µg/m3 of NO2 was associated with a 42% (95% CI, 30-55) increase in ICU admissions. An increase of 0.7 µg/m3 of BC was associated with a 6% (95% CI, 0-13) increase in deaths. O3 was positively associated with severe outcomes when adjusted by NO2. Our study contributes robust evidence that long-term exposure to air pollutants is associated with severe COVID-19.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Adulto , Humanos , Espanha/epidemiologia , Estudos de Coortes , Dióxido de Nitrogênio/toxicidade , COVID-19/epidemiologia , Poluição do Ar/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Material Particulado/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA