Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 14(7): 875-878, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37465315

RESUMO

This viewpoint outlines the case for developing new chemical entities (NCEs) as racemates in infectious diseases and where both enantiomers and racemate retain similar on- and off-target activities as well as similar PK profiles. There are not major regulatory impediments for the development of a racemic drug, and minimizing the manufacturing costs becomes a particularly important objective when bringing an anti-infective therapeutic to the marketplace in the endemic settings of infectious diseases.

2.
Macromol Biosci ; 23(5): e2200518, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36999404

RESUMO

Uncomplicated malaria is effectively treated with oral artemisinin-based combination therapy (ACT). Yet, there is an unmet clinical need for the intravenous treatment of the more fatal severe malaria. There is no combination intravenous therapy for uncomplicated due to the nonavailability of a water-soluble partner drug for the artemisinin, artesunate. The currently available treatment is a two-part regimen split into an intravenous artesunate followed by the conventional oral ACT . In a novel application of polymer therapeutics, the aqueous insoluble antimalarial lumefantrine is conjugated to a carrier polymer to create a new water-soluble chemical entity suitable for intravenous administration in a clinically relevant formulation . The conjugate is characterized by spectroscopic and analytical techniques, and the aqueous solubility of lumefantrine is determined to have increased by three orders of magnitude. Pharmacokinetic studies in mice indicate that there is a significant plasma release of lumefantrine and production its metabolite desbutyl-lumefantrine (area under the curve of metabolite is ≈10% that of the parent). In a Plasmodium falciparum malaria mouse model, parasitemia clearance is 50% higher than that of reference unconjugated lumefantrine. The polymer-lumefantrine shows potential for entering the clinic to meet the need for a one-course combination treatment for severe malaria.


Assuntos
Antimaláricos , Lumefantrina , Malária , Polímeros , Animais , Camundongos , Administração Intravenosa , Antimaláricos/administração & dosagem , Antimaláricos/síntese química , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Antimaláricos/toxicidade , Área Sob a Curva , Modelos Animais de Doenças , Combinação de Medicamentos , Lumefantrina/administração & dosagem , Lumefantrina/análogos & derivados , Lumefantrina/síntese química , Lumefantrina/farmacocinética , Lumefantrina/uso terapêutico , Lumefantrina/toxicidade , Malária/tratamento farmacológico , Camundongos Endogâmicos BALB C , Parasitemia , Plasmodium falciparum , Polímeros/química , Polímeros/farmacologia , Polímeros/uso terapêutico , Solubilidade , Água/química , Masculino
3.
ACS Infect Dis ; 9(3): 706-715, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36802491

RESUMO

The rise in drug-resistant tuberculosis has necessitated the search for alternative antibacterial treatments. Spiropyrimidinetriones (SPTs) represent an important new class of compounds that work through gyrase, the cytotoxic target of fluoroquinolone antibacterials. The present study analyzed the effects of a novel series of SPTs on the DNA cleavage activity of Mycobacterium tuberculosis gyrase. H3D-005722 and related SPTs displayed high activity against gyrase and increased levels of enzyme-mediated double-stranded DNA breaks. The activities of these compounds were similar to those of the fluoroquinolones, moxifloxacin, and ciprofloxacin and greater than that of zoliflodacin, the most clinically advanced SPT. All the SPTs overcame the most common mutations in gyrase associated with fluoroquinolone resistance and, in most cases, were more active against the mutant enzymes than wild-type gyrase. Finally, the compounds displayed low activity against human topoisomerase IIα. These findings support the potential of novel SPT analogues as antitubercular drugs.


Assuntos
Mycobacterium tuberculosis , Humanos , Clivagem do DNA , Inibidores da Topoisomerase II/farmacologia , DNA Girase/genética , DNA Girase/metabolismo , Antituberculosos/farmacologia , Fluoroquinolonas/farmacologia
5.
J Med Chem ; 65(9): 6903-6925, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35500229

RESUMO

New antibiotics with either a novel mode of action or novel mode of inhibition are urgently needed to overcome the threat of drug-resistant tuberculosis (TB). The present study profiles new spiropyrimidinetriones (SPTs), DNA gyrase inhibitors having activity against drug-resistant Mycobacterium tuberculosis (Mtb), the causative agent of TB. While the clinical candidate zoliflodacin has progressed to phase 3 trials for the treatment of gonorrhea, compounds herein demonstrated higher inhibitory potency against Mtb DNA gyrase (e.g., compound 42 with IC50 = 2.0) and lower Mtb minimum inhibitor concentrations (0.49 µM for 42). Notably, 42 and analogues showed selective Mtb activity relative to representative Gram-positive and Gram-negative bacteria. DNA gyrase inhibition was shown to involve stabilization of double-cleaved DNA, while on-target activity was supported by hypersensitivity against a gyrA hypomorph. Finally, a docking model for SPTs with Mtb DNA gyrase was developed, and a structural hypothesis was built for structure-activity relationship expansion.


Assuntos
Mycobacterium tuberculosis , Inibidores da Topoisomerase II , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antituberculosos/química , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , DNA Girase/genética , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico
6.
Antimicrob Agents Chemother ; 66(4): e0219221, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35266826

RESUMO

Described here is a series of spiropyrimidinetrione (SPT) compounds with activity against Mycobacterium tuberculosis through inhibition of DNA gyrase. The SPT class operates via a novel mode of inhibition, which involves Mg2+-independent stabilization of the DNA cleavage complex with DNA gyrase and is thereby not cross-resistant with other DNA gyrase-inhibiting antibacterials, including fluoroquinolones. Compound 22 from the series was profiled broadly and showed in vitro cidality as well as intracellular activity against M. tuberculosis in macrophages. Evidence for the DNA gyrase mode of action was supported by inhibition of the target in a DNA supercoiling assay and elicitation of an SOS response seen in a recA reporter strain of M. tuberculosis. Pharmacokinetic properties of 22 supported evaluation of efficacy in an acute model of M. tuberculosis infection, where modest reduction in CFU numbers was seen. This work offers promise for deriving a novel drug class of tuberculosis agent without preexisting clinical resistance.


Assuntos
Mycobacterium tuberculosis , Tuberculose , DNA Girase/genética , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Humanos , Inibidores da Topoisomerase II/farmacologia , Tuberculose/tratamento farmacológico
7.
J Med Chem ; 65(4): 3371-3387, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35113565

RESUMO

Selective inhibition of the angiotensin-converting enzyme C-domain (cACE) and neprilysin (NEP), leaving the ACE N-domain (nACE) free to degrade bradykinin and other peptides, has the potential to provide the potent antihypertensive and cardioprotective benefits observed for nonselective dual ACE/NEP inhibitors, such as omapatrilat, without the increased risk of adverse effects. We have synthesized three 1-carboxy-3-phenylpropyl dipeptide inhibitors with nanomolar potency based on the previously reported C-domain selective ACE inhibitor lisinopril-tryptophan (LisW) to probe the structural requirements for potent dual cACE/NEP inhibition. Here we report the synthesis, enzyme kinetic data, and high-resolution crystal structures of these inhibitors bound to nACE and cACE, providing valuable insight into the factors driving potency and selectivity. Overall, these results highlight the importance of the interplay between the S1' and S2' subsites for ACE domain selectivity, providing guidance for future chemistry efforts toward the development of dual cACE/NEP inhibitors.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Neprilisina/farmacologia , Peptidil Dipeptidase A/efeitos dos fármacos , Inibidores da Enzima Conversora de Angiotensina/síntese química , Sítios de Ligação/efeitos dos fármacos , Bradicinina/metabolismo , Simulação por Computador , Cristalografia por Raios X , Humanos , Cinética , Lisinopril/farmacologia , Peptidil Dipeptidase A/química , Piridinas/farmacologia , Tiazepinas/farmacologia
8.
J Med Chem ; 64(17): 12790-12807, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34414766

RESUMO

Phenotypic whole cell high-throughput screening of a ∼150,000 diverse set of compounds against Mycobacterium tuberculosis (Mtb) in cholesterol-containing media identified 1,3-diarylpyrazolyl-acylsulfonamide 1 as a moderately active hit. Structure-activity relationship (SAR) studies demonstrated a clear scope to improve whole cell potency to MIC values of <0.5 µM, and a plausible pharmacophore model was developed to describe the chemical space of active compounds. Compounds are bactericidal in vitro against replicating Mtb and retained activity against multidrug-resistant clinical isolates. Initial biology triage assays indicated cell wall biosynthesis as a plausible mode-of-action for the series. However, no cross-resistance with known cell wall targets such as MmpL3, DprE1, InhA, and EthA was detected, suggesting a potentially novel mode-of-action or inhibition. The in vitro and in vivo drug metabolism and pharmacokinetics profiles of several active compounds from the series were established leading to the identification of a compound for in vivo efficacy proof-of-concept studies.


Assuntos
Antituberculosos/farmacologia , Parede Celular/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Sulfonamidas/farmacologia , Antituberculosos/síntese química , Antituberculosos/química , Descoberta de Drogas , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Mycobacterium tuberculosis/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/química
9.
J Med Chem ; 64(4): 2291-2309, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33573376

RESUMO

A novel diazaspiro[3.4]octane series was identified from a Plasmodium falciparum whole-cell high-throughput screening campaign. Hits displayed activity against multiple stages of the parasite lifecycle, which together with a novel sp3-rich scaffold provided an attractive starting point for a hit-to-lead medicinal chemistry optimization and biological profiling program. Structure-activity-relationship studies led to the identification of compounds that showed low nanomolar asexual blood-stage activity (<50 nM) together with strong gametocyte sterilizing properties that translated to transmission-blocking activity in the standard membrane feeding assay. Mechanistic studies through resistance selection with one of the analogues followed by whole-genome sequencing implicated the P. falciparum cyclic amine resistance locus in the mode of resistance.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Compostos de Espiro/farmacologia , Animais , Anopheles/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/metabolismo , Feminino , Células Germinativas/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Ratos , Compostos de Espiro/síntese química , Compostos de Espiro/metabolismo , Relação Estrutura-Atividade
11.
Nat Commun ; 12(1): 269, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33431834

RESUMO

Chemical matter is needed to target the divergent biology associated with the different life cycle stages of Plasmodium. Here, we report the parallel de novo screening of the Medicines for Malaria Venture (MMV) Pandemic Response Box against Plasmodium asexual and liver stage parasites, stage IV/V gametocytes, gametes, oocysts and as endectocides. Unique chemotypes were identified with both multistage activity or stage-specific activity, including structurally diverse gametocyte-targeted compounds with potent transmission-blocking activity, such as the JmjC inhibitor ML324 and the antitubercular clinical candidate SQ109. Mechanistic investigations prove that ML324 prevents histone demethylation, resulting in aberrant gene expression and death in gametocytes. Moreover, the selection of parasites resistant to SQ109 implicates the druggable V-type H+-ATPase for the reduced sensitivity. Our data therefore provides an expansive dataset of compounds that could be redirected for antimalarial development and also point towards proteins that can be targeted in multiple parasite life cycle stages.


Assuntos
Antimaláricos/uso terapêutico , Descoberta de Drogas , Malária/tratamento farmacológico , Malária/transmissão , Pandemias , Aedes/parasitologia , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Análise por Conglomerados , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Concentração Inibidora 50 , Estágios do Ciclo de Vida/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/parasitologia , Malária/epidemiologia , Masculino , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento
12.
J Med Chem ; 64(1): 719-740, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33395287

RESUMO

Phenotypic screening of a Medicines for Malaria Venture compound library against Mycobacterium tuberculosis (Mtb) identified a cluster of pan-active 2-pyrazolylpyrimidinones. The biology triage of these actives using various tool strains of Mtb suggested a novel mechanism of action. The compounds were bactericidal against replicating Mtb and retained potency against clinical isolates of Mtb. Although selected MmpL3 mutant strains of Mtb showed resistance to these compounds, there was no shift in the minimum inhibitory concentration (MIC) against a mmpL3 hypomorph, suggesting mutations in MmpL3 as a possible resistance mechanism for the compounds but not necessarily as the target. RNA transcriptional profiling and the checkerboard board 2D-MIC assay in the presence of varying concentrations of ferrous salt indicated perturbation of the Fe-homeostasis by the compounds. Structure-activity relationship studies identified potent compounds with good physicochemical properties and in vitro microsomal metabolic stability with moderate selectivity over cytotoxicity against mammalian cell lines.


Assuntos
Antituberculosos/química , Pirimidinonas/química , Animais , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meia-Vida , Humanos , Ferro/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Microssomos/metabolismo , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/isolamento & purificação , Pirazóis/química , Pirimidinonas/metabolismo , Pirimidinonas/farmacologia , Ratos , Relação Estrutura-Atividade
13.
J Med Chem ; 63(21): 13013-13030, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33103428

RESUMO

A series of 2,4-disubstituted imidazopyridines, originating from a SoftFocus Kinase library, was identified from a high throughput phenotypic screen against the human malaria parasite Plasmodium falciparum. Hit compounds showed moderate asexual blood stage activity. During lead optimization, several issues were flagged such as cross-resistance against the multidrug-resistant K1 strain, in vitro cytotoxicity, and cardiotoxicity and were addressed through structure-activity and structure-property relationship studies. Pharmacokinetic properties were assessed in mice for compounds showing desirable in vitro activity, a selectivity window over cytotoxicity, and microsomal metabolic stability. Frontrunner compound 37 showed good exposure in mice combined with good in vitro activity against the malaria parasite, which translated into in vivo efficacy in the P. falciparum NOD-scid IL-2Rγnull (NSG) mouse model. Preliminary mechanistic studies suggest inhibition of hemozoin formation as a contributing mode of action.


Assuntos
Antimaláricos/química , Hemeproteínas/antagonistas & inibidores , Imidazóis/química , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/antagonistas & inibidores , Piridinas/química , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Modelos Animais de Doenças , Meia-Vida , Hemeproteínas/metabolismo , Imidazóis/metabolismo , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/tratamento farmacológico , Malária/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Microssomos Hepáticos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Piridinas/metabolismo , Piridinas/farmacologia , Piridinas/uso terapêutico , Relação Estrutura-Atividade
14.
J Med Chem ; 63(20): 11882-11901, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32914979

RESUMO

Herein, we report spiropyrimidinetriones (SPTs) incorporating N-linked azole substituents on a benzisoxazole scaffold with improved Gram-positive antibacterial activity relative to previously described analogues. SPTs have an unusual spirocyclic architecture and represent a new antibacterial class of bacterial DNA gyrase and topoisomerase IV inhibitors. They are not cross-resistant to fluoroquinolones and other DNA gyrase/topoisomerase IV inhibitors used clinically. The activity of the SPTs was assessed for DNA gyrase inhibition, and the antibacterial activity across Gram-positive and Gram-negative pathogens with N-linked 1,2,4-triazoles substituted on the 5-position provides the most worthwhile profile. Directed nucleophilic and electrophilic chemistry was developed to vary this 5-position with carbon, nitrogen, or oxygen substituents and explore structure-activity relationships including those around a target binding model. Compounds with favorable pharmacokinetic parameters were identified, and two compounds demonstrated cidality in a mouse model of Staphylococcus aureus infection.


Assuntos
Antibacterianos/farmacologia , DNA Girase/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Azóis/química , Azóis/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Isoxazóis/química , Isoxazóis/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirimidinonas/síntese química , Pirimidinonas/química , Pirimidinonas/farmacologia , Ratos , Ratos Wistar , Compostos de Espiro/síntese química , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
15.
ACS Infect Dis ; 6(11): 3048-3063, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32966036

RESUMO

Plasmodium falciparum phosphatidylinositol 4-kinase (PfPI4K) has emerged as a promising new drug target for novel antimalarial therapeutics. In the absence of a reliable high-resolution three-dimensional structure, a homology model of PfPI4K was built as a tool for structure-based drug design. This homology model has been validated against three distinct chemical series of potent inhibitors using docking and energy minimizations to elucidate the interactions crucial for PI4K inhibition and potent antiplasmodium activity. Despite its potential as an antimalarial target, the similarity between PfPI4K and structurally related human kinases poses a risk for human off-target kinase activity and associated toxicity. Comparative docking between PfPI4K and human phosphoinositide kinases (PIKs) presents compelling evidence for the origins of selectivity. This in-depth analysis of the PfPI4K homology model, the binding modes of the inhibitors, and the interactions responsible for selectivity over human kinases provides a powerful template for future optimization of Plasmodium PI4K inhibitors.


Assuntos
Antimaláricos , Plasmodium , 1-Fosfatidilinositol 4-Quinase , Antimaláricos/farmacologia , Desenho de Fármacos , Humanos , Plasmodium falciparum
17.
J Med Chem ; 61(20): 9371-9385, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30256636

RESUMO

A lead-optimization program around a 2,6-imidazopyridine scaffold was initiated based on the two early lead compounds, 1 and 2, that were shown to be efficacious in an in vivo humanized Plasmodium falciparum NODscidIL2Rγnull mouse malaria infection model. The observation of atypical dose-response curves when some compounds were tested against multidrug resistant malaria parasite strains guided the optimization process to define a chemical space that led to typical sigmoidal dose-response and complete kill of multidrug resistant parasites. After a structure and property analysis identified such a chemical space, compounds were prepared that displayed suitable activity, ADME, and safety profiles with respect to cytotoxicity and hERG inhibition.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Imidazóis/química , Imidazóis/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Piridinas/química , Piridinas/farmacologia , Absorção Fisico-Química , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacocinética , Relação Dose-Resposta a Droga , Imidazóis/metabolismo , Imidazóis/farmacocinética , Camundongos , Piridinas/metabolismo , Piridinas/farmacocinética , Relação Estrutura-Atividade , Distribuição Tecidual
18.
Artigo em Inglês | MEDLINE | ID: mdl-30249687

RESUMO

The in vivo antimalarial efficacies of two phosphatidylinositol 4-kinase (PI4K) inhibitors, a 3,5-diaryl-2-aminopyrazine sulfoxide and its corresponding sulfone metabolite, were evaluated in the NOD-scid IL2Rγnull (NSG) murine malaria disease model of Plasmodium falciparum infection. We hypothesized that the sulfoxide would serve as a more soluble prodrug for the sulfone, which would lead to improved drug exposure with oral dosing. Both compounds had similar efficacy (90% effective dose [ED90], 0.1 mg kg-1 of body weight) across a quadruple-dose regimen. Pharmacokinetic profiling revealed rapid sulfoxide clearance via conversion to sulfone, with sulfone identified as the major active metabolite. When the sulfoxide was dosed, the exposure of the sulfone achieved was as much as 2.9-fold higher than when the sulfone was directly dosed, thereby demonstrating that the sulfoxide served as an effective prodrug for the treatment of malaria.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Parasitemia/tratamento farmacológico , Pró-Fármacos/farmacologia , Pirazinas/farmacologia , Sulfonas/farmacologia , Sulfóxidos/farmacologia , 1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , 1-Fosfatidilinositol 4-Quinase/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Antimaláricos/sangue , Antimaláricos/síntese química , Antimaláricos/farmacocinética , Biotransformação , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Expressão Gênica , Humanos , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Parasitemia/patologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética , Pirazinas/sangue , Pirazinas/síntese química , Pirazinas/farmacocinética , Sulfonas/sangue , Sulfonas/síntese química , Sulfonas/farmacocinética , Sulfóxidos/sangue , Sulfóxidos/síntese química , Sulfóxidos/farmacocinética , Resultado do Tratamento
19.
Eur J Med Chem ; 157: 610-621, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30125722

RESUMO

Even though many GyrB and ParE inhibitors have been reported in the literature, few possess activity against Gram-negative bacteria. This is primarily due to limited permeability across Gram-negative bacterial membrane as well as bacterial efflux mechanisms. Permeability of compounds across Gram-negative bacterial membranes depends on many factors including physicochemical properties of the inhibitors. Herein, we show the optimization of pyridylureas leading to compounds with potent activity against Gram-negative bacterial species such as P.aeruginosa, E.coli and A.baumannii.


Assuntos
Antibacterianos/farmacologia , DNA Girase/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , Descoberta de Drogas , Escherichia coli/efeitos dos fármacos , Inibidores da Topoisomerase/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , DNA Topoisomerase IV/metabolismo , Relação Dose-Resposta a Droga , Escherichia coli/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/enzimologia , Relação Estrutura-Atividade , Inibidores da Topoisomerase/síntese química , Inibidores da Topoisomerase/química
20.
Artigo em Inglês | MEDLINE | ID: mdl-29941635

RESUMO

The 2-aminopyridine MMV048 was the first drug candidate inhibiting Plasmodium phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant Plasmodium falciparum and Plasmodium vivax clinical isolates. Excellent in vitro antiplasmodial activity translated into high efficacy in Plasmodium berghei and humanized P. falciparum NOD-scid IL-2Rγ null mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate in vivo intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation Plasmodium PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA