Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Biol Drug Des ; 102(5): 1133-1154, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37537000

RESUMO

Lead molecules containing 1,4-quinone moiety are intriguing novel compounds that can be utilized to treat cancer owing to their antiproliferative activities. Nine previously reported quinolinequinones (AQQ1-9) were studied to better understand their inhibitory profile to produce potent and possibly safe lead molecules. The National Cancer Institute (NCI) of Bethesda chose all quinolinequinones (AQQ1-9) based on the NCI Developmental Therapeutics Program and tested them against a panel of 60 cancer cell lines. At a single dose and five further doses, AQQ7 significantly inhibited the proliferation of all leukemia cell lines and some breast cancer cell lines. We investigated the in vitro cytotoxic activities of the most promising compounds, AQQ2 and AQQ7, in MCF7 and T-47D breast cancer cells, DU-145 prostate cancer cells, HCT-116 and COLO 205 colon cancer cell lines, and HaCaT human keratinocytes using the MTT assay. AQQ7 showed particularly high cytotoxicity against MCF7 cells. Further analysis showed that AQQ7 exhibits anticancer activity through the induction of apoptosis without causing cell cycle arrest or oxidative stress. Molecular docking simulations for AQQ2 and AQQ7 were conducted against the COX, PTEN, and EGFR proteins, which are commonly overexpressed in breast, cervical, and prostate cancers. The in vitro ADME and in vivo PK profiling of these compounds have also been reported.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias da Próstata , Humanos , Masculino , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Células MCF-7 , Linhagem Celular Tumoral
2.
Chem Biodivers ; 20(9): e202300848, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37590495

RESUMO

It is quite challenging to find out bioactive molecules in the vast chemical universe. Quinone moiety is a unique structure with a variety of biological properties, particularly in the treatment of cancer. In an effort to develop potent and secure antiproliferative lead compounds, five quinolinequinones (AQQ1-5) described previously have been selected and submitted to the National Cancer Institute (NCI) of Bethesda to envisage their antiproliferative profile based on the NCI Developmental Therapeutics Program. According to the preliminary in vitro single-dose anticancer screening, four of five quinolinequinones (AQQ2-5) were selected for five-dose screening and they displayed promising antiproliferative effects against several cancer types. All AQQs showed a excellent anticancer profile with low micromolar GI50 and TGI values against all leukemia cell lines, some non-small cell lung and ovarian cancer, most colon, melanoma, and renal cancer, and in addition to some breast cancer cell lines. AQQ2-5 reduced the proliferation of all leukemia cell lines at a single dose and five additional doses, as well as some non-small cell lung and ovarian cancer, the majority of colon cancer, melanoma and renal cancer, and some breast cancer cell lines. This motivated us to use in vitro, in silico, and in vivo technologies to further investigate their mode of action. We investigated the in vitro cytotoxic activities of the most promising compounds, AQQ2 and AQQ3, in HCT-116 colon cancer, MCF7 and T-47D breast cancer, and DU-145 prostate cancer cell lines, and HaCaT human keratinocytes. Concomitantly, IC50 values of AQQ2 and AAQ3 against MCF7 and T-47D cell lines of breast cancer, DU-145 cell lines of prostate cancer, HCT-116 cell lines of colon cancer, and HaCaT human keratinocytes were determined. AQQ2 exhibited anticancer activity through the induction of apoptosis and caused alterations in the cell cycle. In silico pharmacokinetic studies of all analogs have been carried out against ATR, CHK1, WEE1, CDK1, and CDK2. In addition to this, in vitro ADME and in vivo pharmacokinetic profiling for the most effective AAQ (AAQ2) have been studied.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias do Colo , Neoplasias Renais , Leucemia , Melanoma , Neoplasias Ovarianas , Neoplasias da Próstata , Humanos , Masculino , Feminino , Estrutura Molecular , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga
3.
J Med Chem ; 65(1): 234-256, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34981940

RESUMO

In this study, we have designed and synthesized pyrazoline analogues that partially mimic the structure of mycobactin, to address the requirement of novel therapeutics to tackle the emerging global challenge of antimicrobial resistance (AMR). Our investigation resulted in the identification of novel lead compounds 44 and 49 as potential mycobactin biosynthesis inhibitors against mycobacteria. Moreover, candidates efficiently eradicated intracellularly surviving mycobacteria. Thermofluorimetric analysis and molecular dynamics simulations suggested that compounds 44 and 49 bind to salicyl-AMP ligase (MbtA), a key enzyme in the mycobactin biosynthetic pathway. To the best of our knowledge, these are the first rationally designed mycobactin inhibitors to demonstrate an excellent in vivo pharmacokinetic profile. In addition, these compounds also exhibited more potent whole-cell efflux pump inhibition than known efflux pump inhibitors verapamil and chlorpromazine. Results from this study pave the way for the development of 3-(2-hydroxyphenyl)-5-(aryl)-pyrazolines as a new weapon against superbug-associated AMR challenges.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Membrana Transportadoras/química , Mycobacterium tuberculosis/efeitos dos fármacos , Oxazóis/química , Tuberculose/tratamento farmacológico , Animais , Antituberculosos/química , Antituberculosos/farmacocinética , Bloqueadores dos Canais de Cálcio/farmacologia , Transporte de Íons , Quelantes de Ferro/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Tuberculose/microbiologia , Verapamil/farmacologia
4.
J Pharm Sci ; 100(6): 2498-507, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21213309

RESUMO

Definitive plasma protein binding (PB) studies in drug development are routinely conducted with radiolabeled material, where the radiochemical purity limits quantitative PB measurement. Recent and emerging regulatory guidances increasingly expect quantitative determination of the fraction unbound (Fu) for key decision making. In the present study, PB of 11 structurally- and therapeutically-diverse drugs spanning the full range of plasma binding was determined by equilibrium dialysis of non-radiolabeled compound and was validated against the respective definitive values obtained by accepted radiolabeled protocols. The extent of plasma binding was in agreement with the radiolabeled studies; however, the methodology reported herein enables reliable quantification of Fu values for highly-bound drugs and is not limited by the radiochemical purity. In order to meet the rigor of a development study, equilibrium dialysis of unlabeled drug must be supported by an appropriately validated bioanalytical method along with studies to determine compound solubility and stability in matrix and dialysis buffer, nonspecific binding to the dialysis device, and ability to achieve equilibrium in the absence of protein. The presented methodology establishes an experimental protocol for definitive PB measurement, which enables quantitative determination of low Fu values, necessary for navigation of new regulatory guidances in clinical drug development.


Assuntos
Proteínas Sanguíneas/metabolismo , Descoberta de Drogas , Preparações Farmacêuticas/sangue , Cromatografia Líquida , Diálise/instrumentação , Diálise/métodos , Descoberta de Drogas/instrumentação , Descoberta de Drogas/métodos , Interações Medicamentosas , Estabilidade de Medicamentos , Humanos , Técnicas In Vitro , Limite de Detecção , Preparações Farmacêuticas/química , Reprodutibilidade dos Testes , Solubilidade , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA