Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(7): e3002718, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38976757

RESUMO

Cancer initiates as a consequence of genomic mutations and its subsequent progression relies in part on increased production of ribosomes to maintain high levels of protein synthesis for unchecked cell growth. Recently, cytidine deaminases have been uncovered as sources of mutagenesis in cancer. In an attempt to form a connection between these 2 cancer driving processes, we interrogated the cytidine deaminase family of proteins for potential roles in human ribosome biogenesis. We identified and validated APOBEC3A and APOBEC4 as novel ribosome biogenesis factors through our laboratory's established screening platform for the discovery of regulators of nucleolar function in MCF10A cells. Through siRNA depletion experiments, we highlight APOBEC3A's requirement in making ribosomes and specific role within the processing and maturation steps that form the large subunit 5.8S and 28S ribosomal (r)RNAs. We demonstrate that a subset of APOBEC3A resides within the nucleolus and associates with critical ribosome biogenesis factors. Mechanistic insight was revealed by transient overexpression of both wild-type and a catalytically dead mutated APOBEC3A, which both increase cell growth and protein synthesis. Through an innovative nuclear RNA sequencing methodology, we identify only modest predicted APOBEC3A C-to-U target sites on the pre-rRNA and pre-mRNAs. Our work reveals a potential direct role for APOBEC3A in ribosome biogenesis likely independent of its editing function. More broadly, we found an additional function of APOBEC3A in cancer pathology through its function in ribosome biogenesis, expanding its relevance as a target for cancer therapeutics.


Assuntos
Nucléolo Celular , Proliferação de Células , Citidina Desaminase , Ribossomos , Humanos , Citidina Desaminase/metabolismo , Citidina Desaminase/genética , Nucléolo Celular/metabolismo , Ribossomos/metabolismo , Proliferação de Células/genética , RNA Ribossômico/metabolismo , RNA Ribossômico/genética , Linhagem Celular Tumoral , Proteínas/metabolismo , Proteínas/genética
2.
Nucleic Acids Res ; 52(4): 1988-2011, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38197221

RESUMO

While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A (p21) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We provide evidence that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.


Assuntos
MicroRNAs , Precursores de RNA , Ribossomos , Animais , Humanos , Mamíferos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
3.
Mol Biol Cell ; 34(12): ar114, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37610836

RESUMO

The nucleolus is a multifunctional nuclear body. To tease out the roles of nucleolar structure without resorting to the use of multi-action drugs, we knocked down the RNA polymerase I subunit RPA194 in HeLa cells by siRNA. Loss of RPA194 resulted in nucleolar-structural segregation and effects on both nucleolus-proximal and distal-nuclear components. The perinucleolar compartment was disrupted, centromere clustering around nucleoli was significantly reduced, and the intranuclear locations of specific genomic loci were altered. Moreover, Cajal bodies, distal from nucleoli, underwent morphological and some compositional changes. In comparison, when the preribosomal RNA-processing factor, UTP4, was knocked down, neither nucleolar segregation nor the intranuclear effects were observed, demonstrating that the changes of nucleolar proximal and distal nuclear domains in RPA194 knockdown cells unlikely arise from a cessation of ribosome synthesis, rather from the consequence of nucleolar-structure alteration. These findings point to a commutative system that links nucleolar structure to the maintenance and spatial organization of certain nuclear domains and genomic loci.


Assuntos
Nucléolo Celular , Núcleo Celular , Humanos , Células HeLa , RNA Polimerase I
4.
RNA Biol ; 20(1): 257-271, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37246770

RESUMO

The main components of the essential cellular process of eukaryotic ribosome biogenesis are highly conserved from yeast to humans. Among these, the U3 Associated Proteins (UTPs) are a small subunit processome subcomplex that coordinate the first two steps of ribosome biogenesis in transcription and pre-18S processing. While we have identified the human counterparts of most of the yeast Utps, the homologs of yeast Utp9 and Bud21 (Utp16) have remained elusive. In this study, we find that NOL7 is the likely ortholog of Bud21. Previously described as a tumour suppressor through regulation of antiangiogenic transcripts, we now show that NOL7 is required for early pre-rRNA accumulation and pre-18S rRNA processing in human cells. These roles lead to decreased protein synthesis and induction of the nucleolar stress response upon NOL7 depletion. Beyond Bud21's nonessential role in yeast, we establish human NOL7 as an essential UTP that is necessary to maintain both early pre-rRNA levels and processing.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA Nucleolar Pequeno/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
bioRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034708

RESUMO

The nucleolus is a multi-functional nuclear body. To tease out the roles of nucleolar structure without resorting to multi-action drugs, we knocked down RNA polymerase I subunit RPA194 in HeLa cells by siRNA. Loss of RPA194 resulted in nucleolar structural segregation and effects on both nucleolus-proximal and distal nuclear components. The perinucleolar compartment was disrupted, centromere-nucleolus interactions were significantly reduced, and the intranuclear locations of specific genomic loci were altered. Moreover, Cajal bodies, distal from nucleoli, underwent morphological and compositional changes. To distinguish whether these global reorganizations are the results of nucleolar structural disruption or inhibition of ribosome synthesis, the pre-ribosomal RNA processing factor, UTP4, was also knocked down, which did not lead to nucleolar segregation, nor the intranuclear effects seen with RPA195A knockdown, demonstrating that they do not arise from a cessation of ribosome synthesis. These findings point to a commutative system that links nucleolar structure to the maintenance and spatial organization of certain nuclear bodies and genomic loci.

6.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36824951

RESUMO

While microRNAs and other non-coding RNAs are the next frontier of novel regulators of mammalian ribosome biogenesis (RB), a systematic exploration of microRNA-mediated RB regulation has not yet been undertaken. We carried out a high-content screen in MCF10A cells for changes in nucleolar number using a library of 2,603 mature human microRNA mimics. Following a secondary screen for nucleolar rRNA biogenesis inhibition, we identified 72 novel microRNA negative regulators of RB after stringent hit calling. Hits included 27 well-conserved microRNAs present in MirGeneDB, and were enriched for mRNA targets encoding proteins with nucleolar localization or functions in cell cycle regulation. Rigorous selection and validation of a subset of 15 microRNA hits unexpectedly revealed that most of them caused dysregulated pre-rRNA processing, elucidating a novel role for microRNAs in RB regulation. Almost all hits impaired global protein synthesis and upregulated CDKN1A ( p21 ) levels, while causing diverse effects on RNA Polymerase 1 (RNAP1) transcription and TP53 protein levels. We discovered that the MIR-28 siblings, hsa-miR-28-5p and hsa-miR-708-5p, directly and potently target the ribosomal protein mRNA RPS28 via tandem primate-specific 3' UTR binding sites, causing a severe pre-18S pre-rRNA processing defect. Our work illuminates novel microRNA attenuators of RB, forging a promising new path for microRNA mimic chemotherapeutics.

7.
RNA ; 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323459

RESUMO

In eukaryotes, the nucleolus is the site of ribosome biosynthesis, an essential process in all cells. While human ribosome assembly is largely evolutionarily conserved, many of the regulatory details underlying its control and function have not yet been well-defined. The nucleolar protein RSL24D1 was originally identified as a factor important for 60S ribosomal subunit biogenesis. In addition, the PeBoW (BOP1-PES1-WDR12) complex has been well-defined as required for pre-28S rRNA processing and cell proliferation. In this study, we show that RSL24D1 depletion impairs both pre-ribosomal RNA (pre-rRNA) transcription and mature 28S rRNA production, leading to decreased protein synthesis and p53 stabilization in human cells. Surprisingly, each of the PeBoW complex members is also required for pre-rRNA transcription. We demonstrate that RSL24D1 and WDR12 co-immunoprecipitate with the RNA polymerase I subunit, RPA194, and regulate its steady state levels. These results uncover the dual role of RSL24D1 and the PeBoW complex in multiple steps of ribosome biogenesis, and provide evidence implicating large ribosomal subunit biogenesis factors in pre-rRNA transcription control.

8.
Mol Cell ; 82(15): 2900-2911.e7, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35905735

RESUMO

Proteogenomic identification of translated small open reading frames has revealed thousands of previously unannotated, largely uncharacterized microproteins, or polypeptides of less than 100 amino acids, and alternative proteins (alt-proteins) that are co-encoded with canonical proteins and are often larger. The subcellular localizations of microproteins and alt-proteins are generally unknown but can have significant implications for their functions. Proximity biotinylation is an attractive approach to define the protein composition of subcellular compartments in cells and in animals. Here, we developed a high-throughput technology to map unannotated microproteins and alt-proteins to subcellular localizations by proximity biotinylation with TurboID (MicroID). More than 150 microproteins and alt-proteins are associated with subnuclear organelles. One alt-protein, alt-LAMA3, localizes to the nucleolus and functions in pre-rRNA transcription. We applied MicroID in a mouse model, validating expression of a conserved nuclear microprotein, and establishing MicroID for discovery of microproteins and alt-proteins in vivo.


Assuntos
Peptídeos , Proteínas , Animais , Nucléolo Celular , Camundongos , Fases de Leitura Aberta , Peptídeos/genética , Proteínas/genética
9.
Nat Chem Biol ; 18(6): 643-651, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35393574

RESUMO

Many unannotated microproteins and alternative proteins (alt-proteins) are coencoded with canonical proteins, but few of their functions are known. Motivated by the hypothesis that alt-proteins undergoing regulated synthesis could play important cellular roles, we developed a chemoproteomic pipeline to identify nascent alt-proteins in human cells. We identified 22 actively translated alt-proteins or N-terminal extensions, one of which is post-transcriptionally upregulated by DNA damage stress. We further defined a nucleolar, cell-cycle-regulated alt-protein that negatively regulates assembly of the pre-60S ribosomal subunit (MINAS-60). Depletion of MINAS-60 increases the amount of cytoplasmic 60S ribosomal subunit, upregulating global protein synthesis and cell proliferation. Mechanistically, MINAS-60 represses the rate of late-stage pre-60S assembly and export to the cytoplasm. Together, these results implicate MINAS-60 as a potential checkpoint inhibitor of pre-60S assembly and demonstrate that chemoproteomics enables hypothesis generation for uncharacterized alt-proteins.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Humanos , RNA Ribossômico , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
RNA Biol ; 19(1): 412-418, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35389826

RESUMO

Small nucleolar RNAs (snoRNAs) are non-coding RNAs vital for ribosomal RNA (rRNA) maturation. The U8 snoRNA, encoded by the SNORD118 gene in humans, is an atypical C/D box snoRNA as it promotes rRNA cleavage rather than 2'-O-methylation and is unique to vertebrates. The U8 snoRNA is critical for cleavage events that produce the mature 5.8S and 28S rRNAs of the large ribosomal subunit. Unexpectedly, single nucleotide polymorphisms (SNPs) in the SNORD118 gene were recently found causal to the neurodegenerative disease leukoencephalopathy, brain calcifications, and cysts (LCC; aka Labrune syndrome), but its molecular pathogenesis is unclear. Here, we will review current knowledge on the function of the U8 snoRNA in ribosome biogenesis, and connect it to the preservation of brain function in humans as well as to its dysregulation in inherited white matter disease.


Assuntos
Leucoencefalopatias , Doenças Neurodegenerativas , Animais , Encéfalo/patologia , Calcinose , Cistos do Sistema Nervoso Central , Humanos , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , RNA Ribossômico/genética , RNA Nucleolar Pequeno/genética
11.
Open Biol ; 12(1): 210305, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078352

RESUMO

Studies of the regulation of nucleolar function are critical for ascertaining clearer insights into the basic biological underpinnings of ribosome biogenesis (RB), and for future development of therapeutics to treat cancer and ribosomopathies. A number of high-throughput primary assays based on morphological alterations of the nucleolus can indirectly identify hits affecting RB. However, there is a need for a more direct high-throughput assay for a nucleolar function to further evaluate hits. Previous reports have monitored nucleolar rRNA biogenesis using 5-ethynyl uridine (5-EU) in low-throughput. We report a miniaturized, high-throughput 5-EU assay that enables specific calculation of nucleolar rRNA biogenesis inhibition, based on co-staining of the nucleolar protein fibrillarin (FBL). The assay uses two siRNA controls: a negative non-targeting siRNA control and a positive siRNA control targeting RNA Polymerase 1 (RNAP1; POLR1A), and specifically quantifies median 5-EU signal within nucleoli. Maximum nuclear 5-EU signal can also be used to monitor the effects of putative small-molecule inhibitors of RNAP1, like BMH-21, or other treatment conditions that cause FBL dispersion. We validate the 5-EU assay on 68 predominately nucleolar hits from a high-throughput primary screen, showing that 58/68 hits significantly inhibit nucleolar rRNA biogenesis. Our new method establishes direct quantification of nucleolar function in high-throughput, facilitating closer study of RB in health and disease.


Assuntos
Nucléolo Celular , Transcrição Gênica , Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
12.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941690

RESUMO

Alopecia, neurologic defects, and endocrinopathy (ANE) syndrome is a rare ribosomopathy known to be caused by a p.(Leu351Pro) variant in the essential, conserved, nucleolar large ribosomal subunit (60S) assembly factor RBM28. We report the second family of ANE syndrome to date and a female pediatric ANE syndrome patient. The patient presented with alopecia, craniofacial malformations, hypoplastic pituitary, and hair and skin abnormalities. Unlike the previously reported patients with the p.(Leu351Pro) RBM28 variant, this ANE syndrome patient possesses biallelic precursor messenger RNA (pre-mRNA) splicing variants at the 5' splice sites of exon 5 (ΔE5) and exon 8 (ΔE8) of RBM28 (NM_018077.2:c.[541+1_541+2delinsA]; [946G > T]). In silico analyses and minigene splicing experiments in cells indicate that each splice variant specifically causes skipping of its respective mutant exon. Because the ΔE5 variant results in an in-frame 31 amino acid deletion (p.(Asp150_Lys180del)) in RBM28 while the ΔE8 variant leads to a premature stop codon in exon 9, we predicted that the ΔE5 variant would produce partially functional RBM28 but the ΔE8 variant would not produce functional protein. Using a yeast model, we demonstrate that the ΔE5 variant does indeed lead to reduced overall growth and large subunit ribosomal RNA (rRNA) production and pre-rRNA processing. In contrast, the ΔE8 variant is comparably null, implying that the partially functional ΔE5 RBM28 protein enables survival but precludes correct development. This discovery further defines the underlying molecular pathology of ANE syndrome to include genetic variants that cause aberrant splicing in RBM28 pre-mRNA and highlights the centrality of nucleolar processes in human genetic disease.


Assuntos
Alopecia/metabolismo , Nucléolo Celular/metabolismo , Doenças do Sistema Endócrino/metabolismo , Deficiência Intelectual/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Maiores/metabolismo , Adulto , Alopecia/genética , Brasil , Doenças do Sistema Endócrino/genética , Éxons , Feminino , Células HEK293 , Cabelo/metabolismo , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Linhagem , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Subunidades Ribossômicas Maiores/genética , Saccharomyces cerevisiae , Adulto Jovem
13.
Genes (Basel) ; 12(4)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805424

RESUMO

Ribosome biogenesis is a complex process that is responsible for the formation of ribosomes and ultimately global protein synthesis. The first step in this process is the synthesis of the ribosomal RNA in the nucleolus, transcribed by RNA Polymerase I. Historically, abnormal nucleolar structure is indicative of poor cancer prognoses. In recent years, it has been shown that ribosome biogenesis, and rDNA transcription in particular, is dysregulated in cancer cells. Coupled with advancements in screening technology that allowed for the discovery of novel drugs targeting RNA Polymerase I, this transcriptional machinery is an increasingly viable target for cancer therapies. In this review, we discuss ribosome biogenesis in breast cancer and the different cellular pathways involved. Moreover, we discuss current therapeutics that have been found to affect rDNA transcription and more novel drugs that target rDNA transcription machinery as a promising avenue for breast cancer treatment.


Assuntos
Neoplasias da Mama/patologia , DNA Ribossômico/metabolismo , Regulação da Expressão Gênica , RNA Ribossômico/genética , Ribossomos/metabolismo , Transcrição Gênica , Neoplasias da Mama/genética , DNA Ribossômico/genética , Feminino , Humanos , RNA Ribossômico/metabolismo , Ribossomos/genética
14.
Mol Biol Cell ; 32(9): 956-973, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33689394

RESUMO

Nucleoli are dynamic nuclear condensates in eukaryotic cells that originate through ribosome biogenesis at loci that harbor the ribosomal DNA. These loci are known as nucleolar organizer regions (NORs), and there are 10 in a human diploid genome. While there are 10 NORs, however, the number of nucleoli observed in cells is variable. Furthermore, changes in number are associated with disease, with increased numbers and size common in aggressive cancers. In the near-diploid human breast epithelial cell line, MCF10A, the most frequently observed number of nucleoli is two to three per cell. Here, to identify novel regulators of ribosome biogenesis we used high-throughput quantitative imaging of MCF10A cells to identify proteins that, when depleted, increase the percentage of nuclei with ≥5 nucleoli. Unexpectedly, this unique screening approach led to identification of proteins associated with the cell cycle. Functional analysis on a subset of hits further revealed not only proteins required for progression through the S and G2/M phase, but also proteins required explicitly for the regulation of RNA polymerase I transcription and protein synthesis. Thus, results from this screen for increased nucleolar number highlight the significance of the nucleolus in human cell cycle regulation, linking RNA polymerase I transcription to cell cycle progression.


Assuntos
Ciclo Celular/fisiologia , Nucléolo Celular/metabolismo , RNA Polimerase I/metabolismo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Nucléolo Celular/fisiologia , Núcleo Celular/metabolismo , DNA Ribossômico/genética , Humanos , Microscopia de Fluorescência/métodos , Região Organizadora do Nucléolo/metabolismo , Região Organizadora do Nucléolo/fisiologia , Biossíntese de Proteínas , Proteínas/metabolismo , RNA Polimerase I/genética , RNA Polimerase I/fisiologia
15.
PLoS Genet ; 16(8): e1008967, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32813698

RESUMO

Dysregulation of ribosome production can lead to a number of developmental disorders called ribosomopathies. Despite the ubiquitous requirement for these cellular machines used in protein synthesis, ribosomopathies manifest in a tissue-specific manner, with many affecting the development of the face. Here we reveal yet another connection between craniofacial development and making ribosomes through the protein Paired Box 9 (PAX9). PAX9 functions as an RNA Polymerase II transcription factor to regulate the expression of proteins required for craniofacial and tooth development in humans. We now expand this function of PAX9 by demonstrating that PAX9 acts outside of the cell nucleolus to regulate the levels of proteins critical for building the small subunit of the ribosome. This function of PAX9 is conserved to the organism Xenopus tropicalis, an established model for human ribosomopathies. Depletion of pax9 leads to craniofacial defects due to abnormalities in neural crest development, a result consistent with that found for depletion of other ribosome biogenesis factors. This work highlights an unexpected layer of how the making of ribosomes is regulated in human cells and during embryonic development.


Assuntos
Deficiências do Desenvolvimento/genética , Desenvolvimento Embrionário/genética , Fator de Transcrição PAX9/genética , Ribossomos/genética , Animais , Nucléolo Celular/genética , Deficiências do Desenvolvimento/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Crista Neural/crescimento & desenvolvimento , Crista Neural/metabolismo , Crista Neural/patologia , Biossíntese de Proteínas/genética , RNA Polimerase II/genética , Ribossomos/patologia , Xenopus/genética , Xenopus/crescimento & desenvolvimento
16.
RNA ; 26(8): 1049-1059, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32371454

RESUMO

Nop9 is an essential factor in the processing of preribosomal RNA. Its absence in yeast is lethal, and defects in the human ortholog are associated with breast cancer, autoimmunity, and learning/language impairment. PUF family RNA-binding proteins are best known for sequence-specific RNA recognition, and most contain eight α-helical repeats that bind to the RNA bases of single-stranded RNA. Nop9 is an unusual member of this family in that it contains eleven repeats and recognizes both RNA structure and sequence. Here we report a crystal structure of Saccharomyces cerevisiae Nop9 in complex with its target RNA within the 20S preribosomal RNA. This structure reveals that Nop9 brings together a carboxy-terminal module recognizing the 5' single-stranded region of the RNA and a bifunctional amino-terminal module recognizing the central double-stranded stem region. We further show that the 3' single-stranded region of the 20S target RNA adds sequence-independent binding energy to the RNA-Nop9 interaction. Both the amino- and carboxy-terminal modules retain the characteristic sequence-specific recognition of PUF proteins, but the amino-terminal module has also evolved a distinct interface, which allows Nop9 to recognize either single-stranded RNA sequences or RNAs with a combination of single-stranded and structured elements.


Assuntos
RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X/métodos , Humanos , Conformação Proteica em alfa-Hélice/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
17.
Biochem Soc Trans ; 48(2): 595-612, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32267487

RESUMO

Ribosome biogenesis is the fine-tuned, essential process that generates mature ribosomal subunits and ultimately enables all protein synthesis within a cell. Novel regulators of ribosome biogenesis continue to be discovered in higher eukaryotes. While many known regulatory factors are proteins or small nucleolar ribonucleoproteins, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) are emerging as a novel modulatory layer controlling ribosome production. Here, we summarize work uncovering non-coding RNAs (ncRNAs) as novel regulators of ribosome biogenesis and highlight their links to diseases of defective ribosome biogenesis. It is still unclear how many miRNAs or lncRNAs are involved in phenotypic or pathological disease outcomes caused by impaired ribosome production, as in the ribosomopathies, or by increased ribosome production, as in cancer. In time, we hypothesize that many more ncRNA regulators of ribosome biogenesis will be discovered, which will be followed by an effort to establish connections between disease pathologies and the molecular mechanisms of this additional layer of ribosome biogenesis control.


Assuntos
MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Ribossomos/metabolismo , Nucléolo Celular/metabolismo , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/metabolismo , Fenótipo , RNA Ribossômico 5S/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas Ribossômicas/metabolismo , Regulação para Cima
19.
Trends Genet ; 35(10): 754-767, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31376929

RESUMO

Ribosomopathies are a diverse subset of diseases caused by reduced expression of, or mutations in, factors necessary for making ribosomes, the protein translation machinery in the cell. Despite the ubiquitous need for ribosomes in all cell types, ribosomopathies manifest with tissue-specific defects and sometimes increased cancer susceptibility, but few treatments target the underlying cause. By highlighting new research in the field, we review current hypotheses for the basis of this tissue specificity. Based on new work, we broaden our understanding of the role of ribosome biogenesis in diverse tissue types throughout embryonic development. We also pose the question of whether previously described human conditions such as aging can be at least partially attributed to defects in making ribosomes.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , RNA Ribossômico , Animais , Humanos , Família Multigênica , Precursores de RNA , Processamento Pós-Transcricional do RNA , Transcrição Gênica
20.
J Clin Invest ; 129(7): 2878-2887, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31038472

RESUMO

The etiology of severe hemolytic anemia in most patients with recessive hereditary spherocytosis (rHS) and the related disorder hereditary pyropoikilocytosis (HPP) is unknown. Whole exome sequencing of DNA from probands of 24 rHS or HPP kindreds identified numerous mutations in erythrocyte membrane α-spectrin (SPTA1). Twenty-eight mutations were novel, with null alleles frequently found in trans to missense mutations. No mutations were identified in a third of SPTA1 alleles (17/48). Whole genome sequencing revealed linkage disequilibrium between the common rHS-linked α-spectrinBug Hill polymorphism and a rare intron 30 variant in all 17 mutation-negative alleles. In vitro minigene studies and in vivo splicing analyses revealed the intron 30 variant changes a weak alternate branch point (BP) to a strong BP. This change leads to increased utilization of an alternate 3' splice acceptor site, perturbing normal α-spectrin mRNA splicing and creating an elongated mRNA transcript. In vivo mRNA stability studies revealed the newly created termination codon in the elongated transcript activates nonsense mediated decay leading to spectrin deficiency. These results demonstrate a unique mechanism of human genetic disease contributes to the etiology of a third of cases of rHS, facilitating diagnosis and treatment of severe anemia, and identifying a new target for therapeutic manipulation.


Assuntos
Anemia Hemolítica Congênita , Membrana Eritrocítica , Mutação de Sentido Incorreto , Sítios de Splice de RNA , Splicing de RNA/genética , Espectrina , Anemia Hemolítica Congênita/genética , Anemia Hemolítica Congênita/metabolismo , Anemia Hemolítica Congênita/patologia , Membrana Eritrocítica/genética , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/patologia , Feminino , Humanos , Masculino , Espectrina/biossíntese , Espectrina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA