Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301788, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507731

RESUMO

The relentless drive toward miniaturization in microelectronic devices has sparked an urgent need for materials that offer both high thermal conductivity (TC) and excellent electrical insulation. Thermal interface materials (TIMs) possessing these dual attributes are highly sought after for modern electronics, but achieving such a combination has proven to be a formidable challenge. In this study, a cutting-edge solution is presented by developing boron nitride (BN) and graphite films layered silicone rubber composites with exceptional TC and electrical insulation properties. Through a carefully devised stacking-cutting method, the high orientation degree of both BN and graphite films is successfully preserved, resulting in an unprecedented through-plane TC of 23.7 Wm-1 K-1 and a remarkably low compressive modulus of 4.85 MPa. Furthermore, the exceptional properties of composites, including low thermal resistance and high resilience rate, make them a reliable and durable option for various applications. Practical tests demonstrate their outstanding heat dissipation performance, significantly reducing CPU temperatures in a computer cooling system. This research work unveils the possible upper limit of TC in BN-based TIMs and paves the way for their large-scale practical implementation, particularly in the thermal management of next-generation electronic devices.

2.
Small Methods ; : e2301458, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326035

RESUMO

The high thermal storage density of phase change materials (PCMs) has attracted considerable attention in solar energy applications. However, the practicality of PCMs is often limited by the problems of leakage, poor solar-thermal conversion capability, and low thermal conductivity, resulting in low-efficiency solar energy storage. In this work, a new system of MXene-integrated solid-solid PCMs is presented as a promising solution for a solar-thermal energy storage and electric conversion system with high efficiency and energy density. The composite system's performance is enhanced by the intrinsic photo-thermal behavior of MXene and the heterogeneous phase transformation properties of PCM molecular chains. The optimal composites system has an impressive solar thermal energy storage efficiency of up to 94.5%, with an improved energy storage capacity of 149.5 J g-1 , even at a low MXene doping level of 5 wt.%. Additionally, the composite structure shows improved thermal conductivity and high thermal cycling stability. Furthermore, a proof-of-concept solar-thermal-electric conversion device is designed based on the optimized M-SSPCMs and commercial thermoelectric generators, which exhibit excellent energy conversion efficiency. The results of this study highlight the potential of the developed PCM composites in high-efficiency solar energy utilization for advanced photo-thermal systems.

3.
Nanomaterials (Basel) ; 13(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570558

RESUMO

With the rapid development of the electronics industry, there is a growing demand for packaging materials that possess both high thermal conductivity (TC) and low electrical conductivity (EC). However, traditional insulating fillers such as boron nitride, aluminum nitride, and alumina (Al2O3) have relatively low intrinsic TC. When graphene, which exhibits both superhigh TC and EC, is used as a filler to fill epoxy resin, the TC of blends can be much higher than that of blends containing more traditional fillers. However, the high EC of graphene limits its application in cases where electrical insulation is required. To address this challenge, a method for coating graphene sheets with an in situ grown Al2O3 layer has been proposed for the fabrication of epoxy-based composites with both high TC and low EC. In the presence of a cationic surfactant, a dense Al2O3 layer with a network structure can be formed on the surface of graphene sheets. When the total content of Al2O3 and graphene mixed filler reached 30 wt%, the TC of the epoxy composite reached 0.97 W m-1 K-1, while the EC remained above 1011 Ω·cm. Finite element simulations accurately predicted TC and EC values in accordance with experimental results. This material, with its combination of high TC and good insulation properties, exhibits excellent potential for microelectronic packaging applications.

4.
ACS Appl Mater Interfaces ; 14(12): 14568-14578, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35302747

RESUMO

Extrusion-based three-dimensional (3D) printing techniques usually exhibit anisotropic thermal, mechanical, and electric properties due to the shearing-induced alignment during extrusion. However, the transformation from the extrusion to stacking process is always neglected and its influence on the final properties remains ambiguous. In this work, we adopt two different sized boron nitride (BN) sheets, namely, small-sized BN (S-BN) and large-sized BN (L-BN), to explore their impact on the orientation degree, morphology, and final anisotropic thermal conductivity (TC) of thermoplastic polyurethane (TPU) composites by fused deposition modeling. The transformation from one-dimensional axial alignment in the extruded filament to two-dimensional alignment (horizontal and vertical alignment) in the stacking filament of BN sheets is observed, and its impact on anisotropic TC in three directions is clarified. It is found that L-BN/TPU composites show a high TC of 6.45 W m-1 K-1 at 60 wt % BN content along the printing direction, while at a lower content (<40 wt %), S-BN/TPU composites exhibit a higher TC than L-BN/TPU composites. Effects of orientation, viscosity, and voids are comprehensively considered to elucidate such differences. Finally, heat dissipation tests demonstrate the great potential of 3D printed BN/TPU composites to be used in thermal management applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA