Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(46): 25150-25159, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37948300

RESUMO

Adaptive and reversible self-assembly of supramolecular protein structures is a fundamental characteristic of dynamic living matter. However, the quantitative detection and assessment of the emergence of mesoscale protein complexes from small and dynamic oligomeric precursors remains highly challenging. Here, we present a novel approach utilizing a short membrane nanotube (sNT) pulled from a planar membrane reservoir as nanotemplates for molecular reconstruction, manipulation, and sensing of protein oligomerization and self-assembly at the mesoscale. The sNT reports changes in membrane shape and rigidity caused by membrane-bound proteins as variations of the ionic conductivity of the sNT lumen. To confine oligomerization to the sNT, we have designed and synthesized rigid oligoamide foldamer tapes (ROFTs). Charged ROFTs incorporate into the planar and sNT membranes, mediate protein binding to the membranes, and, driven by the luminal electric field, shuttle the bound proteins between the sNT and planar membranes. Using Annexin-V (AnV) as a prototype, we show that the sNT detects AnV oligomers shuttled into the nanotube by ROFTs. Accumulation of AnV on the sNT induces its self-assembly into a curved lattice, restricting the sNT geometry and inhibiting the material uptake from the reservoir during the sNT extension, leading to the sNT fission. By comparing the spontaneous and ROFT-mediated entry of AnV into the sNT, we reveal how intricate membrane curvature sensing by small AnV oligomers controls the lattice self-assembly. These results establish sNT-ROFT as a powerful tool for molecular reconstruction and functional analyses of protein oligomerization and self-assembly, with broad application to various membrane processes.


Assuntos
Proteínas de Membrana , Nanotubos , Ligação Proteica , Proteínas de Membrana/metabolismo
2.
Antioxidants (Basel) ; 11(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36552523

RESUMO

Oxidative stress and ROS are important players in the pathogenesis of numerous diseases. In addition to directly altering proteins, ROS also affects lipids with negative intrinsic curvature such as phosphatidylethanolamine (PE), producing PE adducts and lysolipids. The formation of PE adducts potentiates the protonophoric activity of mitochondrial uncoupling proteins, but the molecular mechanism remains unclear. Here, we linked the ROS-mediated change in lipid shape to the mechanical properties of the membrane and the function of uncoupling protein 1 (UCP1) and adenine nucleotide translocase 1 (ANT1). We show that the increase in the protonophoric activity of both proteins occurs due to the decrease in bending modulus in lipid bilayers in the presence of lysophosphatidylcholines (OPC and MPC) and PE adducts. Moreover, MD simulations showed that modified PEs and lysolipids change the lateral pressure profile of the membrane in the same direction and by the similar amplitude, indicating that modified PEs act as lipids with positive intrinsic curvature. Both results indicate that oxidative stress decreases stored curvature elastic stress (SCES) in the lipid bilayer membrane. We demonstrated that UCP1 and ANT1 sense SCES and proposed a novel regulatory mechanism for the function of these proteins. The new findings should draw the attention of the scientific community to this important and unexplored area of redox biochemistry.

3.
Annu Rev Biophys ; 51: 473-497, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35239417

RESUMO

Cellular membranes self-assemble from and interact with various molecular species. Each molecule locally shapes the lipid bilayer, the soft elastic core of cellular membranes. The dynamic architecture of intracellular membrane systems is based on elastic transformations and lateral redistribution of these elementary shapes, driven by chemical and curvature stress gradients. The minimization of the total elastic stress by such redistribution composes the most basic, primordial mechanism of membrane curvature-composition coupling (CCC). Although CCC is generally considered in the context of dynamic compositional heterogeneity of cellular membrane systems, in this article we discuss a broader involvement of CCC in controlling membrane deformations. We focus specifically on the mesoscale membrane transformations in open, reservoir-governed systems, such as membrane budding, tubulation, and the emergence of highly curved sites of membrane fusion and fission. We reveal that the reshuffling of molecular shapes constitutes an independent deformation mode with complex rheological properties.This mode controls effective elasticity of local deformations as well as stationary elastic stress, thus emerging as a major regulator of intracellular membrane remodeling.


Assuntos
Bicamadas Lipídicas , Fusão de Membrana , Membrana Celular/química , Elasticidade , Bicamadas Lipídicas/química
4.
Methods Mol Biol ; 2159: 141-162, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32529369

RESUMO

Membrane fusion and fission are indispensable parts of intracellular membrane recycling and transport. Electrophysiological techniques have been instrumental in discovering and studying fusion and fission pores, the key intermediates shared by both processes. In cells, electrical admittance measurements are used to assess in real time the dynamics of the pore conductance, reflecting the nanoscale transformations of the pore, simultaneously with membrane leakage. Here, we described how this technique is adapted to in vitro mechanistic analyses of membrane fission by dynamin 1 (Dyn1), the protein orchestrating membrane fission in endocytosis. We reconstitute the fission reaction using purified Dyn1 and biomimetic lipid membrane nanotubes of defined geometry. We provide a comprehensive protocol describing simultaneous measurements of the ionic conductance through the nanotube lumen and across the nanotube wall, enabling spatiotemporal correlation between the nanotube constriction by Dyn1, leading to fission and membrane leakage. We present examples of "leaky" and "tight" fission reactions, specify the resolution limits of our method, and discuss how our results support the hemi-fission conjecture.


Assuntos
Membrana Celular/metabolismo , Dinamina I/metabolismo , Fenômenos Eletrofisiológicos , Algoritmos , Membrana Celular/química , Eletrodos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Nanotubos/química , Técnicas de Patch-Clamp , Permeabilidade
5.
Nat Protoc ; 15(8): 2443-2469, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32591769

RESUMO

Cellular membrane processes, from signal transduction to membrane fusion and fission, depend on acute membrane deformations produced by small and short-lived protein complexes working in conditions far from equilibrium. Real-time monitoring and quantitative assessment of such deformations are challenging; hence, mechanistic analyses of the protein action are commonly based on ensemble averaging, which masks important mechanistic details of the action. In this protocol, we describe how to reconstruct and quantify membrane remodeling by individual proteins and small protein complexes in vitro, using an ultra-short (80- to 400-nm) lipid nanotube (usNT) template. We use the luminal conductance of the usNT as the real-time reporter of the protein interaction(s) with the usNT. We explain how to make and calibrate the usNT template to achieve subnanometer precision in the geometrical assessment of the molecular footprints on the nanotube membrane. We next demonstrate how membrane deformations driven by purified proteins implicated in cellular membrane remodeling can be analyzed at a single-molecule level. The preparation of one usNT takes ~1 h, and the shortest procedure yielding the basic geometrical parameters of a small protein complex takes 10 h.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Nanotecnologia/métodos , Membrana Celular/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Nanotubos/química
6.
Soft Matter ; 16(5): 1179-1189, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31934707

RESUMO

The theory of elasticity of lipid membranes is used widely to describe processes of cell membrane remodeling. Classically, the functional of a membrane's elastic energy is derived under assumption of small deformations; the membrane is considered as an infinitely thin film. This functional is quadratic on membrane surface curvature, with half of the splay modulus as its proportionality coefficient; it is generally applicable for small deformations only. Any validity of this functional for the regime of strong deformations should be verified experimentally. Recently, research using molecular dynamics simulations challenged the validity of this classic, linear model, i.e. the constancy of the splay modulus for strongly bent membranes. Here we demonstrate that the quadratic energy functional still can be applied for calculation of the elastic energy of strongly deformed membranes without introducing higher order terms with additional elastic moduli, but only if applied separately for each lipid monolayer. For cylindrical membranes, both classic and monolayerwise models yield equally accurate results. For cylindrical deformations we experimentally show that the elastic energy of lipid monolayers is additive: a low molecular weight solvent leads to an approximately twofold decrease in the membrane bending stiffness. Accumulation of solvent molecules in the inner monolayer of a membrane cylinder can explain these results, as the solvent partially prevents lipid molecules from splaying there. Thus, the linear theory of elasticity can be expanded through the range from weak to strong deformations-its simplicity and physical transparency describe various membrane phenomena.


Assuntos
Membrana Celular/química , Lipídeos de Membrana/química , Elasticidade , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Solventes/química
7.
Nat Commun ; 10(1): 5327, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757972

RESUMO

The endoplasmic reticulum (ER) is a continuous cell-wide membrane network. Network formation has been associated with proteins producing membrane curvature and fusion, such as reticulons and atlastin. Regulated network fragmentation, occurring in different physiological contexts, is less understood. Here we find that the ER has an embedded fragmentation mechanism based upon the ability of reticulon to produce fission of elongating network branches. In Drosophila, Rtnl1-facilitated fission is counterbalanced by atlastin-driven fusion, with the prevalence of Rtnl1 leading to ER fragmentation. Ectopic expression of Drosophila reticulon in COS-7 cells reveals individual fission events in dynamic ER tubules. Consistently, in vitro analyses show that reticulon produces velocity-dependent constriction of lipid nanotubes leading to stochastic fission via a hemifission mechanism. Fission occurs at elongation rates and pulling force ranges intrinsic to the ER, thus suggesting a principle whereby the dynamic balance between fusion and fission controlling organelle morphology depends on membrane motility.


Assuntos
Proteínas de Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Animais , Células COS , Membrana Celular , Chlorocebus aethiops , Drosophila , Proteínas de Drosophila/genética , GTP Fosfo-Hidrolases/genética , Fusão de Membrana , Nanotubos , Membrana Nuclear
8.
Biochim Biophys Acta Biomembr ; 1860(3): 691-699, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29253504

RESUMO

The effects of dipole modifiers, thyroid hormones (thyroxine and triiodothyronine) and xanthene dyes (Rose Bengal, phloxineB, erythrosin, eosinY and fluorescein) on the pore-forming activity of the lipopeptide syringomycin E (SRE) produced by Pseudomonas syringae were studied in a model bilayer. Thyroxine does not noticeably influence the steady-state number of open SRE channels (Nop), whereas triiodothyronine decreases it 10-fold at -50mV. Rose Bengal, phloxine B and erythrosin significantly increase Nop by 350, 100 and 70 times, respectively. Eosin Y and fluorescein do not practically affect the pore-forming activity of SRE. Recently, we showed that hormones decrease the dipole potential of lipid bilayers by approximately 60mV at 50µM, while Rose Bengal, phloxine B and erythrosin at 2.5µM reduce the membrane dipole potential by 120, 80 and 50mV, respectively. In the present study using differential scanning microcalorimetry, confocal fluorescence microscopy, the calcein release technique and measurements of membrane curvature elasticity, we show that triiodothyronine strongly affects the fluidity of model membranes: its addition leads to a significant decrease in the temperature and cooperativity of the main phase transition of DPPC, calcein leakage from DOPC vesicles, fluidization of solid domains in DOPC/DPPC liposomes, and promotion of lipid curvature stress. Thyroxine exerts a weaker effect. Xanthene dyes do not influence the phase transition of DPPC. Despite the decrease in the dipole potential, thyroid hormones modulate SRE channels predominantly via the elastic properties of the membrane, whereas the xanthene dyes Rose Bengal, phloxine B and erythrosine affect SRE channels via bilayer electrostatics.


Assuntos
Depsipeptídeos/efeitos dos fármacos , Corantes Fluorescentes/farmacologia , Lipopeptídeos/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Peptídeos Cíclicos/efeitos dos fármacos , Tiroxina/farmacologia , Tri-Iodotironina/farmacologia , Xantenos/farmacologia , Varredura Diferencial de Calorimetria , Depsipeptídeos/farmacologia , Elasticidade , Condutividade Elétrica , Fluoresceínas/metabolismo , Bicamadas Lipídicas , Lipopeptídeos/farmacologia , Lipossomos , Lipídeos de Membrana/química , Microscopia Confocal , Microscopia de Fluorescência , Nanotubos , Peptídeos Cíclicos/farmacologia , Fosfolipídeos/química
9.
J Phys D Appl Phys ; 51(34)2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30655651

RESUMO

The importance of curvature as a structural feature of biological membranes has been recognized for many years and has fascinated scientists from a wide range of different backgrounds. On the one hand, changes in membrane morphology are involved in a plethora of phenomena involving the plasma membrane of eukaryotic cells, including endo- and exocytosis, phagocytosis and filopodia formation. On the other hand, a multitude of intracellular processes at the level of organelles rely on generation, modulation, and maintenance of membrane curvature to maintain the organelle shape and functionality. The contribution of biophysicists and biologists is essential for shedding light on the mechanistic understanding and quantification of these processes. Given the vast complexity of phenomena and mechanisms involved in the coupling between membrane shape and function, it is not always clear in what direction to advance to eventually arrive at an exhaustive understanding of this important research area. The 2018 Biomembrane Curvature and Remodeling Roadmap of Journal of Physics D: Applied Physics addresses this need for clarity and is intended to provide guidance both for students who have just entered the field as well as established scientists who would like to improve their orientation within this fascinating area.

10.
Science ; 339(6126): 1433-6, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23520112

RESUMO

Biological membrane fission requires protein-driven stress. The guanosine triphosphatase (GTPase) dynamin builds up membrane stress by polymerizing into a helical collar that constricts the neck of budding vesicles. How this curvature stress mediates nonleaky membrane remodeling is actively debated. Using lipid nanotubes as substrates to directly measure geometric intermediates of the fission pathway, we found that GTP hydrolysis limits dynamin polymerization into short, metastable collars that are optimal for fission. Collars as short as two rungs translated radial constriction to reversible hemifission via membrane wedging of the pleckstrin homology domains (PHDs) of dynamin. Modeling revealed that tilting of the PHDs to conform with membrane deformations creates the low-energy pathway for hemifission. This local coordination of dynamin and lipids suggests how membranes can be remodeled in cells.


Assuntos
Dinamina I/química , Dinamina I/metabolismo , Bicamadas Lipídicas/metabolismo , Biocatálise , Guanosina Trifosfato/metabolismo , Hidrólise , Bicamadas Lipídicas/química , Modelos Biológicos , Nanotubos , Conformação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Termodinâmica
11.
Cell ; 135(7): 1276-86, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-19084269

RESUMO

The GTPase dynamin is critically involved in membrane fission during endocytosis. How does dynamin use the energy of GTP hydrolysis for membrane remodeling? By monitoring the ionic permeability through lipid nanotubes (NT), we found that dynamin was capable of squeezing NT to extremely small radii, depending on the NT lipid composition. However, long dynamin scaffolds did not produce fission: instead, fission followed GTPase-dependent cycles of assembly and disassembly of short dynamin scaffolds and involved a stochastic process dependent on the curvature stress imposed by dynamin. Fission happened spontaneously upon NT release from the scaffold, without leakage. Our calculations revealed that local narrowing of NT could induce cooperative lipid tilting, leading to self-merger of the inner monolayer of NT (hemifission), consistent with the absence of leakage. We propose that dynamin transmits GTP's energy to periodic assembling of a limited curvature scaffold that brings lipids to an unstable intermediate.


Assuntos
Dinaminas/metabolismo , Endocitose , Membranas Intracelulares/metabolismo , Animais , Membrana Celular/metabolismo , Guanosina Trifosfato/metabolismo , Bicamadas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Modelos Biológicos , Nanotubos , Nucleotídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA