Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
PLoS Biol ; 21(12): e3002427, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38079451

RESUMO

Multiplexed cellular imaging typically relies on the sequential application of detection probes, as antibodies or DNA barcodes, which is complex and time-consuming. To address this, we developed here protein nanobarcodes, composed of combinations of epitopes recognized by specific sets of nanobodies. The nanobarcodes are read in a single imaging step, relying on nanobodies conjugated to distinct fluorophores, which enables a precise analysis of large numbers of protein combinations. Fluorescence images from nanobarcodes were used as input images for a deep neural network, which was able to identify proteins with high precision. We thus present an efficient and straightforward protein identification method, which is applicable to relatively complex biological assays. We demonstrate this by a multicell competition assay, in which we successfully used our nanobarcoded proteins together with neurexin and neuroligin isoforms, thereby testing the preferred binding combinations of multiple isoforms, in parallel.


Assuntos
Anticorpos de Domínio Único , DNA , Anticorpos , Imagem Óptica , Isoformas de Proteínas
3.
Br J Dermatol ; 189(6): 741-749, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37671665

RESUMO

BACKGROUND: Short anagen hair (SAH) is a rare paediatric hair disorder characterized by a short anagen phase, an inability to grow long scalp hair and a negative psychological impact. The genetic basis of SAH is currently unknown. OBJECTIVES: To perform molecular genetic investigations in 48 individuals with a clinical phenotype suggestive of SAH to identify, if any, the genetic basis of this condition. METHODS: Exome sequencing was performed in 27 patients diagnosed with SAH or with a complaint of short, nongrowing hair. The cohort was screened for variants with a minor allele frequency (MAF) < 5% in the general population and a Combined Annotation Dependent Depletion (CADD) score > 15, to identify genes whose variants were enriched in this cohort. Sanger sequencing was used for variant validation and screening of 21 additional individuals with the same clinical diagnosis and their relatives. Genetic association testing of SAH-related variants for male pattern hair loss (MPHL) was performed using UK Biobank data. RESULTS: Analyses revealed that 20 individuals (42%) carried mono- or biallelic pathogenic variants in WNT10A. Rare WNT10A variants are associated with a phenotypic spectrum ranging from no clinical signs to severe ectodermal dysplasia. A significant association was found between WNT10A and SAH, and this was mostly observed in individuals with light-coloured hair and regression of the frontoparietal hairline. Notably, the most frequent variant in the cohort [c.682T>A;p.(Phe228Ile)] was in linkage disequilibrium with four common WNT10A variants, all of which have a known association with MPHL. Using UK Biobank data, our analyses showed that c.682T>A;p.(Phe228Ile) and one other variant identified in the SAH cohort are also associated with MPHL, and partially explain the known associations between WNT10A and MPHL. CONCLUSIONS: Our results suggest that WNT10A is associated with SAH and that SAH has a genetic overlap with the common phenotype MPHL. The presumed shared biologic effect of WNT10A variants in SAH and MPHL is a shortening of the anagen phase. Other factors, such as modifier genes and sex, may also play a role in the clinical manifestation of hair phenotypes associated with the WNT10A locus.


Assuntos
Displasia Ectodérmica , Cabelo , Humanos , Masculino , Criança , Alopecia , Fenótipo , Displasia Ectodérmica/genética , Frequência do Gene , Proteínas Wnt/genética
5.
JAMA Dermatol ; 158(11): 1245-1253, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36044230

RESUMO

Importance: Uncombable hair syndrome (UHS) is a rare hair shaft anomaly that manifests during infancy and is characterized by dry, frizzy, and wiry hair that cannot be combed flat. Only about 100 known cases have been reported so far. Objective: To elucidate the genetic spectrum of UHS. Design, Setting, and Participants: This cohort study includes 107 unrelated index patients with a suspected diagnosis of UHS and family members who were recruited worldwide from January 2013 to December 2021. Participants of all ages, races, and ethnicities were recruited at referral centers or were enrolled on their own initiative following personal contact with the authors. Genetic analyses were conducted in Germany from January 2014 to December 2021. Main Outcomes and Measures: Clinical photographs, Sanger or whole-exome sequencing and array-based genotyping of DNA extracted from blood or saliva samples, and 3-dimensional protein modeling. Descriptive statistics, such as frequency counts, were used to describe the distribution of identified pathogenic variants and genotypes. Results: The genetic characteristics of patients with UHS were established in 80 of 107 (74.8%) index patients (82 [76.6%] female) who carried biallelic pathogenic variants in PADI3, TGM3, or TCHH (ie, genes that encode functionally related hair shaft proteins). Molecular genetic findings from 11 of these 80 individuals were previously published. In 76 (71.0%) individuals, the UHS phenotype were associated with pathogenic variants in PADI3. The 2 most commonly observed PADI3 variants account for 73 (48.0%) and 57 (37.5%) of the 152 variant PADI3 alleles in total, respectively. Two individuals carried pathogenic variants in TGM3, and 2 others carried pathogenic variants in TCHH. Haplotype analyses suggested a founder effect for the 4 most commonly observed pathogenic variants in the PADI3 gene. Conclusions and Relevance: This cohort study extends and gives an overview of the genetic variant spectrum of UHS based on molecular genetic analyses of the largest worldwide collective of affected individuals, to our knowledge. Formerly, a diagnosis of UHS could only be made by physical examination of the patient and confirmed by microscopical examination of the hair shaft. The discovery of pathogenic variants in PADI3, TCHH, and TGM3 may open a new avenue for clinicians and affected individuals by introducing molecular diagnostics for UHS.


Assuntos
Doenças do Cabelo , Feminino , Masculino , Humanos , Estudos de Coortes , Doenças do Cabelo/diagnóstico , Doenças do Cabelo/genética , Sequenciamento do Exoma , Cabelo/anormalidades , Transglutaminases
6.
Expert Rev Clin Immunol ; 18(8): 845-857, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35770930

RESUMO

INTRODUCTION: Alopecia areata (AA) is a non-scarring, hair loss disorder and a common autoimmune-mediated disease with an estimated lifetime risk of about 2%. To date, the treatment of AA is mainly based on suppression or stimulation of the immune response. Genomics and transcriptomics studies generated important insights into the underlying pathophysiology, enabled discovery of molecular disease signatures, which were used in some of the recent clinical trials to monitor drug response and substantiated the consideration of new therapeutic modalities for the treatment of AA such as abatacept, dupilumab, ustekinumab, and Janus Kinase (JAK) inhibitors. AREAS COVERED: In this review, genomics and transcriptomics studies in AA are discussed in detail with particular emphasis on their past and prospective translational impacts. Microbiome studies are also briefly introduced. EXPERT OPINION: The generation of large datasets using the new high-throughput technologies has revolutionized medical research and AA has also benefited from the wave of omics studies. However, the limitations associated with JAK inhibitors and clinical heterogeneity in AA patients underscore the necessity for continuing omics research in AA for discovery of novel therapeutic modalities and development of clinical tools for precision medicine.


Assuntos
Alopecia em Áreas , Doenças Autoimunes , Inibidores de Janus Quinases , Alopecia em Áreas/tratamento farmacológico , Alopecia em Áreas/genética , Humanos , Inibidores de Janus Quinases/uso terapêutico , Estudos Prospectivos , Ustekinumab/uso terapêutico
7.
PLoS One ; 14(12): e0225943, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31790498

RESUMO

Hypotrichosis simplex (HS) with and without woolly hair (WH) comprises a group of rare, monogenic disorders of hair loss. Patients present with a diffuse loss of scalp and/or body hair, which usually begins in early childhood and progresses into adulthood. Some of the patients also show hair that is tightly curled. Approximately 10 genes for autosomal recessive and autosomal dominant forms of HS have been identified in the last decade, among them five genes for the dominant form. We collected blood and buccal samples from 17 individuals of a large British family with HS and WH. After having sequenced all known dominant genes for HS in this family without the identification of any disease causing mutation, we performed a genome-wide scan, using the HumanLinkage-24 BeadChip, followed by a classical linkage analysis; and whole exome-sequencing (WES). Evidence for linkage was found for a region on chromosome 4q35.1-q35.2 with a maximum LOD score of 3.61. WES led to the identification of a mutation in the gene SORBS2, encoding sorbin and SH3 domain containing 2. Unfortunately, we could not find an additional mutation in any other patient/family with HS; and in cell culture, we could not observe any difference between cloned wildtype and mutant SORBS2 using western blotting and immunofluorescence analyses. Therefore, at present, SORBS2 cannot be considered a definite disease gene for this phenotype. However, the locus on chromosome 4q is a robust and novel finding for hypotrichosis with woolly hair. Further fine mapping and sequencing efforts are therefore warranted in order to confirm SORBS2 as a plausible HS disease gene.


Assuntos
Cromossomos Humanos Par 4 , Genes Dominantes , Predisposição Genética para Doença , Hipotricose/diagnóstico , Hipotricose/genética , Fenótipo , Locos de Características Quantitativas , Alelos , Mapeamento Cromossômico , Feminino , Estudos de Associação Genética , Ligação Genética , Humanos , Masculino , Mutação , Linhagem , Reino Unido , Sequenciamento Completo do Genoma
9.
J Clin Invest ; 127(4): 1485-1490, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28287404

RESUMO

Dowling-Degos disease (DDD) is an autosomal-dominant disorder of skin pigmentation associated with mutations in keratin 5 (KRT5), protein O-fucosyltransferase 1 (POFUT1), or protein O-glucosyltransferase 1 (POGLUT1). Here, we have identified 6 heterozygous truncating mutations in PSENEN, encoding presenilin enhancer protein 2, in 6 unrelated patients and families with DDD in whom mutations in KRT5, POFUT1, and POGLUT1 have been excluded. Further examination revealed that the histopathologic feature of follicular hyperkeratosis distinguished these 6 patients from previously studied individuals with DDD. Knockdown of psenen in zebrafish larvae resulted in a phenotype with scattered pigmentation that mimicked human DDD. In the developing zebrafish larvae, in vivo monitoring of pigment cells suggested that disturbances in melanocyte migration and differentiation underlie the DDD pathogenesis associated with PSENEN. Six of the PSENEN mutation carriers presented with comorbid acne inversa (AI), an inflammatory hair follicle disorder, and had a history of nicotine abuse and/or obesity, which are known trigger factors for AI. Previously, PSENEN mutations were identified in familial AI, and comanifestation of DDD and AI has been reported for decades. The present work suggests that PSENEN mutations can indeed cause a comanifestation of DDD and AI that is likely triggered by predisposing factors for AI. Thus, the present report describes a DDD subphenotype in PSENEN mutation carriers that is associated with increased susceptibility to AI.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Hidradenite Supurativa/genética , Hiperpigmentação/genética , Proteínas de Membrana/genética , Dermatopatias Genéticas/genética , Dermatopatias Papuloescamosas/genética , Animais , Códon sem Sentido , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Hidradenite Supurativa/enzimologia , Hiperpigmentação/enzimologia , Masculino , Dermatopatias Genéticas/enzimologia , Dermatopatias Papuloescamosas/enzimologia , Peixe-Zebra
11.
Exp Dermatol ; 26(6): 536-541, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27306922

RESUMO

Alopecia areata (AA) is a common hair loss disorder of autoimmune aetiology, which often results in pronounced psychological distress. Understanding of the pathophysiology of AA is increasing, due in part to recent genetic findings implicating common variants at several genetic loci. To date, no study has investigated the contribution of copy number variants (CNVs) to AA, a prominent class of genomic variants involved in other autoimmune disorders. Here, we report a genomewide- and a candidate gene-focused CNV analysis performed in a cohort of 585 patients with AA and 1340 controls of Central European origin. A nominally significant association with AA was found for CNVs in the following five chromosomal regions: 4q35.2, 6q16.3, 9p23, 16p12.1 and 20p12.1. The most promising finding was a 342.5-kb associated region in 6q16.3 (duplications in 4/585 patients; 0/1340 controls). The duplications spanned the genes MCHR2 and MCHR2-AS1, implicated in melanin-concentrating hormone (MCH) signalling. These genes have not been implicated in previous studies of AA pathogenesis. However, previous research has shown that MCHR2 affects the scale colour of barfin flounder fish via the induction of melanin aggregation. AA preferentially affects pigmented hairs, and the hair of patients with AA frequently shows a change in colour when it regrows following an acute episode of AA. This might indicate a relationship between AA, pigmentation and MCH signalling. In conclusion, the present results provide suggestive evidence for the involvement of duplications in MCHR2 in AA pathogenesis.


Assuntos
Alopecia em Áreas/genética , Variações do Número de Cópias de DNA , Estudo de Associação Genômica Ampla , Receptores Acoplados a Proteínas G/genética , Receptores do Hormônio Hipofisário/genética , Adulto , Bélgica , Mapeamento Cromossômico , Estudos de Coortes , Europa (Continente) , Feminino , Genótipo , Alemanha , Humanos , Hormônios Hipotalâmicos/metabolismo , Masculino , Melaninas/metabolismo , Países Baixos , Pigmentação , Hormônios Hipofisários/metabolismo , Polimorfismo de Nucleotídeo Único , Transdução de Sinais
12.
Am J Hum Genet ; 99(6): 1292-1304, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27866708

RESUMO

Uncombable hair syndrome (UHS), also known as "spun glass hair syndrome," "pili trianguli et canaliculi," or "cheveux incoiffables" is a rare anomaly of the hair shaft that occurs in children and improves with age. UHS is characterized by dry, frizzy, spangly, and often fair hair that is resistant to being combed flat. Until now, both simplex and familial UHS-affected case subjects with autosomal-dominant as well as -recessive inheritance have been reported. However, none of these case subjects were linked to a molecular genetic cause. Here, we report the identification of UHS-causative mutations located in the three genes PADI3 (peptidylarginine deiminase 3), TGM3 (transglutaminase 3), and TCHH (trichohyalin) in a total of 11 children. All of these individuals carry homozygous or compound heterozygous mutations in one of these three genes, indicating an autosomal-recessive inheritance pattern in the majority of UHS case subjects. The two enzymes PADI3 and TGM3, responsible for posttranslational protein modifications, and their target structural protein TCHH are all involved in hair shaft formation. Elucidation of the molecular outcomes of the disease-causing mutations by cell culture experiments and tridimensional protein models demonstrated clear differences in the structural organization and activity of mutant and wild-type proteins. Scanning electron microscopy observations revealed morphological alterations in hair coat of Padi3 knockout mice. All together, these findings elucidate the molecular genetic causes of UHS and shed light on its pathophysiology and hair physiology in general.


Assuntos
Antígenos/genética , Doenças do Cabelo/genética , Cabelo/crescimento & desenvolvimento , Hidrolases/genética , Proteínas de Filamentos Intermediários/genética , Mutação , Transglutaminases/genética , Adolescente , Animais , Sequência de Bases , Linhagem Celular , Códon sem Sentido , Feminino , Cabelo/anormalidades , Cabelo/anatomia & histologia , Cabelo/metabolismo , Humanos , Hidrolases/deficiência , Hidrolases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Conformação Proteica , Proteína-Arginina Desiminase do Tipo 3 , Desiminases de Arginina em Proteínas , Transglutaminases/deficiência , Transglutaminases/metabolismo , Vibrissas/anormalidades
13.
Am J Med Genet B Neuropsychiatr Genet ; 168B(5): 354-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26010163

RESUMO

Transcription factor 4 (TCF4) is one of the most robust of all reported schizophrenia risk loci and is supported by several genetic and functional lines of evidence. While numerous studies have implicated common genetic variation at TCF4 in schizophrenia risk, the role of rare, small-sized variants at this locus-such as single nucleotide variants and short indels which are below the resolution of chip-based arrays requires further exploration. The aim of the present study was to investigate the association between rare TCF4 sequence variants and schizophrenia. Exon-targeted resequencing was performed in 190 German schizophrenia patients. Six rare variants at the coding exons and flanking sequences of the TCF4 gene were identified, including two missense variants and one splice site variant. These six variants were then pooled with nine additional rare variants identified in 379 European participants of the 1000 Genomes Project, and all 15 variants were genotyped in an independent German sample (n = 1,808 patients; n = 2,261 controls). These data were then analyzed using six statistical methods developed for the association analysis of rare variants. No significant association (P < 0.05) was found. However, the results from our association and power analyses suggest that further research into the possible involvement of rare TCF4 sequence variants in schizophrenia risk is warranted by the assessment of larger cohorts with higher statistical power to identify rare variant associations.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Predisposição Genética para Doença , Variação Genética , Esquizofrenia/genética , Fatores de Transcrição/genética , Feminino , Genótipo , Humanos , Masculino , Fator de Transcrição 4 , População Branca/genética
14.
Am J Hum Genet ; 94(1): 135-43, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24387993

RESUMO

Dowling-Degos disease (DDD) is an autosomal-dominant genodermatosis characterized by progressive and disfiguring reticulate hyperpigmentation. We previously identified loss-of-function mutations in KRT5 but were only able to detect pathogenic mutations in fewer than half of our subjects. To identify additional causes of DDD, we performed exome sequencing in five unrelated affected individuals without mutations in KRT5. Data analysis identified three heterozygous mutations from these individuals, all within the same gene. These mutations, namely c.11G>A (p.Trp4*), c.652C>T (p.Arg218*), and c.798-2A>C, are within POGLUT1, which encodes protein O-glucosyltransferase 1. Further screening of unexplained cases for POGLUT1 identified six additional mutations, as well as two of the above described mutations. Immunohistochemistry of skin biopsies of affected individuals with POGLUT1 mutations showed significantly weaker POGLUT1 staining in comparison to healthy controls with strong localization of POGLUT1 in the upper parts of the epidermis. Immunoblot analysis revealed that translation of either wild-type (WT) POGLUT1 or of the protein carrying the p.Arg279Trp substitution led to the expected size of about 50 kDa, whereas the c.652C>T (p.Arg218*) mutation led to translation of a truncated protein of about 30 kDa. Immunofluorescence analysis identified a colocalization of the WT protein with the endoplasmic reticulum and a notable aggregating pattern for the truncated protein. Recently, mutations in POFUT1, which encodes protein O-fucosyltransferase 1, were also reported to be responsible for DDD. Interestingly, both POGLUT1 and POFUT1 are essential regulators of Notch activity. Our results furthermore emphasize the important role of the Notch pathway in pigmentation and keratinocyte morphology.


Assuntos
Glucosiltransferases/genética , Hiperpigmentação/genética , Mutação , Dermatopatias Genéticas/genética , Dermatopatias Papuloescamosas/genética , Adolescente , Adulto , Exoma , Feminino , Estudo de Associação Genômica Ampla , Heterozigoto , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Linhagem , Conformação Proteica , Análise de Sequência de DNA , Pele/patologia , Adulto Jovem
15.
Schizophr Res ; 127(1-3): 35-40, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21288692

RESUMO

Large rare deletions in NRXN1 increase the risk for schizophrenia. The aim of the present study was to determine whether small rare sequence changes in exons and splice sites contribute to the development of schizophrenia in a high-penetrance manner. Complete coding regions and splice sites were resequenced in 94 patients and 94 controls. Among the 16 rare sequence variants, two missense substitutions (E201G and I1068V) were observed in single patients but not in controls. Investigation of DNA samples from family members and in silico analysis of possible effects on protein function produced no evidence of high-penetrance genetic effects. Follow-up genotyping of the most promising findings (E201G and I1068V) in an independent sample of >1400 patients and >1100 controls revealed no overrepresentation in patients compared to controls (E201G: 0/1 and I1068V: 0/0). Since I1068V was observed in a single patient, it is impossible to exclude the possibility that I1068V makes a minor contribution to schizophrenia susceptibility. Overall, however, the results do not suggest the existence of rare, highly penetrant NRXN1 mutations in patients with schizophrenia.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Predisposição Genética para Doença , Mutação de Sentido Incorreto/genética , Proteínas do Tecido Nervoso/genética , Esquizofrenia/genética , Adulto , Proteínas de Ligação ao Cálcio , Biologia Computacional/métodos , Éxons/genética , Feminino , Seguimentos , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Moléculas de Adesão de Célula Nervosa , Esquizofrenia/fisiopatologia
16.
Biomaterials ; 29(31): 4195-204, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18691753

RESUMO

Aim of the study was to design a 3D tissue-engineering scaffold capable of sequentially delivering two bone morphogenetic proteins (BMP). The novel delivery system consisted of microspheres of polyelectrolyte complexes of poly(4-vinyl pyridine) (P(4)VN) and alginic acid loaded with the growth factors BMP-2 and BMP-7 which themselves were loaded into the scaffolds constructed of PLGA. Microspheres carrying the growth factors were prepared using polyelectrolyte solutions with different concentrations (4-10%) to control the growth factor release rate. Release kinetics was studied using albumin as the model drug and the populations that release their contents very early and very late in the release study were selected to carry BMP-2 and BMP-7, respectively. Foam porosity changed when the microspheres were loaded. Bone marrow derived stem cells (BMSC) from rats were seeded into these foams. Alkaline phosphatase (ALP) activities were found to be lowest and cell proliferation was highest at all time points with foams carrying both the microsphere populations, regardless of BMP presence. With the present doses used neither BMP-2 nor BMP-7 delivery had any direct effect on proliferation, however, they enhanced osteogenic differentiation. Co-administration of BMP enhanced osteogenic differentiation to a higher degree than with their single administration.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Sistemas de Liberação de Medicamentos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Microesferas , Engenharia Tecidual , Fosfatase Alcalina/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/farmacologia , Bovinos , Proliferação de Células/efeitos dos fármacos , Humanos , Cinética , Microscopia Confocal , Microscopia Eletrônica de Varredura , Porosidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Soroalbumina Bovina/metabolismo , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/enzimologia , Células-Tronco/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA