Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(35): 10834-10841, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39093057

RESUMO

In this study, we present an innovative approach leveraging combination internal resonances within a NEMS platform to generate mechanical soliton frequency combs (FCs) spanning a broad spectrum. In the time domain, the FCs take the form of a periodic train of narrow pulses, a highly coveted phenomenon within the realm of nonlinear wave-matter interactions. Our method relies on an intricate interaction among multiple vibration modes of a bracket-nanocantilever enabled by the strong nonlinearity of the electrostatic field. Through numerical simulation and experimental validation, we demonstrate that by amplifying the motions of the NEMS with the external electrostatic forcing tuned to excite the superharmonic resonance of order-n of the fundamental mode and exploiting combination internal resonances, we can generate multiple stable localized mechanical wave packets with different lobe sizes embodying soliton states I and II. This represents a significant breakthrough with profound implications for quantum computing and metrology.

2.
Micromachines (Basel) ; 15(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39064390

RESUMO

Currently, the most advanced micromachined microphones on the market are based on a capacitive coupling principle. Capacitive micro-electromechanical-system-based (MEMS) microphones resemble their millimetric counterparts, both in function and in performance. The most advanced MEMS microphones reached a competitive level compared to commonly used measuring microphones in most of the key performance parameters except the acoustic overload point (AOP). In an effort to find a solution for the measurement of high-level acoustic fields, microphones with the piezoelectric coupling principle have been proposed. These novel microphones exploit the piezoelectric effect of a thin layer of aluminum nitride, which is incorporated in their diaphragm structure. In these microphones fabricated with micromachining technology, no fixed electrode is necessary, in contrast to capacitive microphones. This specificity significantly simplifies both the design and the fabrication and opens the door for the improvement of the acoustic overload point, as well as harsh environmental applications. Several variations of piezoelectric structures together with an idea leading to electrically controlled sensitivity of MEMS piezoelectric microphones are discussed in this paper.

3.
Sensors (Basel) ; 24(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732922

RESUMO

Vibration energy harvesting based on piezoelectric transducers is an attractive choice to replace single-use batteries in powering Wireless Sensor Nodes (WSNs). As of today, their widespread application is hindered due to low operational bandwidth and the conventional use of lead-based materials. The Restriction of Hazardous Substances legislation (RoHS) implemented in the European Union restricts the use of lead-based piezoelectric materials in future electronic devices. This paper investigates lithium niobate (LiNbO3) as a lead-free material for a high-performance broadband Piezoelectric Energy Harvester (PEH). A single-clamped, cantilever beam-based piezoelectric microgenerator with a mechanical footprint of 1 cm2, working at a low resonant frequency of 200 Hz, with a high piezoelectric coupling coefficient and broad bandwidth, was designed and microfabricated, and its performance was evaluated. The PEH device, with an acceleration of 1 g delivers a maximum output RMS power of nearly 35 µW/cm2 and a peak voltage of 6 V for an optimal load resistance at resonance. Thanks to a high squared piezoelectric electro-mechanical coupling coefficient (k2), the device offers a broadband operating frequency range above 10% of the central frequency. The Mason electro-mechanical equivalent circuit was derived, and a SPICE model of the device was compared with experimental results. Finally, the output voltage of the harvester was rectified to provide a DC output stored on a capacitor, and it was regulated and used to power an IoT node at an acceleration of as low as 0.5 g.

4.
Micromachines (Basel) ; 13(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36557427

RESUMO

Ultrasound power delivery can be considered a convenient technique for charging implantable medical devices. In this work, an intra-body system has been modeled to characterize the phenomenon of ultrasound power transmission. The proposed system comprises a Langevin transducer as transmitter and an AlN-based square piezoelectric micro-machined ultrasonic transducer as receiver. The medium layers, in which elastic waves propagate, were made by polydimethylsiloxane to mimic human tissue and stainless steel to replace the case of the implantable device. To characterize the behavior of the transducers, measurements of impedance and phase, velocity and displacement, and acoustic pressure field were carried out in the experimental activity. Then, voltage and power output were measured to analyze the performance of the ultrasound power delivery system. For a root mean square voltage input of approximately 35 V, the power density resulted in 21.6 µW cm-2. Such a result corresponds to the data obtained with simulation through a one-dimensional lumped parameter transmission line model. The methodology proposed to develop the ultrasound power delivery (UPD) system, as well as the use of non-toxic materials for the fabrication of the intra-body elements, are a valid design approach to raise awareness of using wireless power transfer techniques for charging implantable devices.

5.
Sensors (Basel) ; 22(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35214524

RESUMO

This paper deals with a new design of a thermo-magnetically activated piezoelectric generator. This proposed generator exploits the temperature-dependent magnetization of a ferromagnetic material, which is exposed to temporary change of temperature cycles. To promote a better understanding of the operation of this mechanism, a global coupled numerical model is presented, which is able to predict the static and dynamic behavior of the generator. It is shown that with some modifications to the physical design, the generator can be tuned for different activation temperatures. Energy densities of 280 and 67 µJcm-3 were achieved by the proposed model of the generator for its opening and closing commutation, respectively.

6.
Micromachines (Basel) ; 13(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35056264

RESUMO

The paper presents a technique to obtain an electrically-tunable matching between the series and parallel resonant frequencies of a piezoelectric MEMS acoustic transducer to increase the effectiveness of acoustic emission/detection in voltage-mode driving and sensing. The piezoelectric MEMS transducer has been fabricated using the PiezoMUMPs technology, and it operates in a plate flexural mode exploiting a 6 mm × 6 mm doped silicon diaphragm with an aluminum nitride (AlN) piezoelectric layer deposited on top. The piezoelectric layer can be actuated by means of electrodes placed at the edges of the diaphragm above the AlN film. By applying an adjustable bias voltage Vb between two properly-connected electrodes and the doped silicon, the d31 mode in the AlN film has been exploited to electrically induce a planar static compressive or tensile stress in the diaphragm, depending on the sign of Vb, thus shifting its resonant frequency. The working principle has been first validated through an eigenfrequency analysis with an electrically induced prestress by means of 3D finite element modelling in COMSOL Multiphysics®. The first flexural mode of the unstressed diaphragm results at around 5.1 kHz. Then, the piezoelectric MEMS transducer has been experimentally tested in both receiver and transmitter modes. Experimental results have shown that the resonance can be electrically tuned in the range Vb = ±8 V with estimated tuning sensitivities of 8.7 ± 0.5 Hz/V and 7.8 ± 0.9 Hz/V in transmitter and receiver modes, respectively. A matching of the series and parallel resonant frequencies has been experimentally demonstrated in voltage-mode driving and sensing by applying Vb = 0 in transmission and Vb = -1.9 V in receiving, respectively, thereby obtaining the optimal acoustic emission and detection effectiveness at the same operating frequency.

7.
Sensors (Basel) ; 21(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34833578

RESUMO

Wireless sensor nodes (WSNs) are the fundamental part of an Internet of Things (IoT) system for detecting and transmitting data to a master node for processing. Several research studies reveal that one of the disadvantages of conventional, battery-powered WSNs, however, is that they typically require periodic maintenance. This paper aims to contribute to existing research studies on this issue by exploring a new energy-autonomous and battery-free WSN concept for monitor vibrations. The node is self-powered from the conversion of ambient mechanical vibration energy into electrical energy through a piezoelectric transducer implemented with lead-free lithium niobate piezoelectric material to also explore solutions that go towards a greener and more sustainable IoT. Instead of implementing any particular sensors, the vibration measurement system exploits the proportionality between the mechanical power generated by a piezoelectric transducer and the time taken to store it as electrical energy in a capacitor. This helps reduce the component count with respect to conventional WSNs, as well as energy consumption and production costs, while optimizing the overall node size and weight. The readout is therefore a function of the time it takes for the energy storage capacitor to charge between two constant voltage levels. The result of this work is a system that includes a specially designed lead-free piezoelectric vibrational transducer and a battery-less sensor platform with Bluetooth low energy (BLE) connectivity. The system can harvest energy in the acceleration range [0.5 g-1.2 g] and measure vibrations with a limit of detection (LoD) of 0.6 g.

8.
Opt Express ; 29(20): 31796-31811, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615265

RESUMO

We present an optical transduction method adapted to the detection of low frequency thermal perturbations and implemented for photothermal trace gas detection. The transducer is a π-phase shifted fiber Bragg grating, stabilized and interrogated by the Pound-Drever-Hall method. The principle of detection is based on the frequency shift of the narrow optical resonance, induced by the temperature variations. In temperature measurement mode, the stabilization leads to an estimated limit of detection of 1 µK at room temperature and at a frequency of 40 Hz. When the fiber transducer is placed in a gas cell, CO2 is detected by photothermal spectroscopy with a limit of detection of 3 ppm/H z. This novel method, based on a single fiber, offers robustness, stabilized operation and remote detection capability.

9.
Microsyst Nanoeng ; 7: 17, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34567731

RESUMO

Chaotic systems, presenting complex and nonreproducible dynamics, may be found in nature, from the interaction between planets to the evolution of weather, but can also be tailored using current technologies for advanced signal processing. However, the realization of chaotic signal generators remains challenging due to the involved dynamics of the underlying physics. In this paper, we experimentally and numerically present a disruptive approach to generate a chaotic signal from a micromechanical resonator. This technique overcomes the long-established complexity of controlling the buckling in micro/nanomechanical structures by modulating either the amplitude or the frequency of the driving force applied to the resonator in the nonlinear regime. The experimental characteristic parameters of the chaotic regime, namely, the Poincaré sections and Lyapunov exponents, are directly comparable to simulations for different configurations. These results confirm that this dynamical approach is transposable to any kind of micro/nanomechanical resonator, from accelerometers to microphones. We demonstrate a direct application exploiting the mixing properties of the chaotic regime by transforming an off-the-shelf microdiaphragm into a true random number generator conforming to the National Institute of Standards and Technology specifications. The versatility of this original method opens new paths to combine the unique properties of chaos with the exceptional sensitivity of microstructures, leading to emergent microsystems.

10.
Sensors (Basel) ; 20(14)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708834

RESUMO

A highly sensitive Fabry-Perot based transduction method is proposed as an all-optical alternative for the detection of trace gas by the photoacoustic spectroscopy technique. A lumped element model is firstly devised to help design the whole system and is successfully compared to finite element method simulations. The fabricated Fabry-Perot microphone consists in a hinged cantilever based diaphragm, processed by laser cutting, and directly assembled at the tip of an optical fiber. We find a high acoustic sensitivity of 630 mV/Pa and a state-of-the-art noise equivalent pressure, as low as ~   2   µ Pa / Hz at resonance. For photoacoustic trace gas detection, the Fabry-Perot microphone is further embedded in a cylindrical multipass cell and shows an ultimate detection limit of 15 ppb of NO in nitrogen. The proposed optical trace gas sensor offers the advantages of high sensitivity and easy assembling, as well as the possibility of remote detection.

11.
J Acoust Soc Am ; 142(4): 2121, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29092579

RESUMO

This work presents a lumped parameters equivalent model of condenser microphone based on analogies between acoustic, mechanical, fluidic, and electrical domains. Parameters of the model were determined mainly through analytical relations and/or finite element method (FEM) simulations. Special attention was paid to the air gap modeling and to the use of proper boundary condition. Corresponding lumped-parameters were obtained as results of FEM simulations. Because of its simplicity, the model allows a fast simulation and is readily usable for microphone design. This work shows the validation of the equivalent circuit on three real cases of capacitive microphones, including both traditional and Micro-Electro-Mechanical Systems structures. In all cases, it has been demonstrated that the sensitivity and other related data obtained from the equivalent circuit are in very good agreement with available measurement data.

12.
Artigo em Inglês | MEDLINE | ID: mdl-21096719

RESUMO

A needle used in in-vivo medical percutaneous procedures is subject to auto-deflection coming from its interactions with inhomogeneous and anisotropic tissues and organs in human body. In this paper we present the modelling and the characterization of microsensors glued on a medical needle in order to detect its real-time deflection by measuring strain variations on the needle. A first prototype has been developed by gluing metal foil strain gauges to the surface of a biopsy needle. The characterization of this prototype is carried out in comparison with theoretical analysis and finite element method (FEM) modelling. Results acquired through these different methods show an excellent conformity and confirm the feasibility of an instrumented medical device.


Assuntos
Agulhas , Desenho de Equipamento , Humanos , Modelos Teóricos
13.
Artigo em Inglês | MEDLINE | ID: mdl-21096953

RESUMO

We recently developed a novel active implant for the treatment of severe stress urinary incontinence. This innovative medical device has been developed with the main purpose of reducing the mean urethral occlusive pressure of the current prosthesis. This goal is achieved by detecting circumstances implying either high or low intra-abdominal pressures by a single 3-axis accelerometer. In fact, posture and activity of the patient are monitored in real time. We investigated in this study the possibility of detecting cough events (one of the main causes of urine loss in incontinent patient) by MechanoMyoGraphy (MMG) of the Rectus Abdominis (RA) using the same accelerometer. We compared MMG signal detection characteristics (burst onset times and RMS values) to the method of reference, the ElectroMyoGraphy (EMG). It is shown that detection of cough effort by MMG presents lower performances, mostly in terms of cough anticipation, than EMG detection. However, MMG still remains a good option for an implantable system comparing to implantable EMG disadvantages.


Assuntos
Tosse/diagnóstico , Eletromiografia/métodos , Reto do Abdome/fisiologia , Feminino , Humanos , Masculino , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA