Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chromosome Res ; 15(3): 399-408, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17429747

RESUMO

Causes of chromosomal differences such as mosaicism between embryos developed in vivo and in vitro may be resolved using animal models to compare embryos generated in vivo with those generated by different production systems. The aims of this study were: (1) to test a ZOO-FISH approach (using bovine painting probes) to detect abnormal chromosome make-up in the sheep embryo model, and (2) to examine the extent of chromosome deviation in sheep embryos derived in vivo and in vitro. Cytogenetic analysis was performed on day 6 in-vivo and in-vitro derived sheep embryos using commercially available bovine chromosome painting probes for sex chromosomes X-Y and autosomes 1-29. A total of 8631 interphase and metaphase nuclei were analyzed from 49 in-vitro-derived and 51 in-vivo-derived embryos. The extent of deviation from normal ovine chromosome make-up was higher (p < 0.05) in in-vitro-produced embryos relative to in-vivo-derived embryos (65.3% vs. 19.6% respectively) mainly due to diploid-polyploid mosaicism. Polyploid cells ranged from 3n to 8 n with tetraploids most predominant among non-diploid cells. The proportions of polyploid cells per mixoploid embryo in in-vitro-produced embryos ranged from 1.4% to 30.3%, in contrast to less than 10% among the in-vivo-derived embryos. It was concluded that in-vitro-derived embryos are vulnerable to ploidy change compared to their in-vivo counterparts. The application of ZOO-FISH to domestic animal embryos is an effective approach to study the chromosome complement of species for which DNA probes are unavailable.


Assuntos
Aberrações Cromossômicas , Embrião de Mamíferos , Testes Genéticos/métodos , Hibridização in Situ Fluorescente/métodos , Animais , Bovinos , Transtornos Cromossômicos/diagnóstico , Modelos Animais , Mosaicismo , Ploidias , Diagnóstico Pré-Natal/métodos , Técnicas Reprodutivas , Ovinos
2.
Cloning Stem Cells ; 9(1): 118-29, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17386019

RESUMO

Animal models have played an important part in establishing our knowledge base on reproduction, development, and the occurrence and impact of chromosome abnormalities. Translocations involving the X chromosome and an autosome are unique in that they elicit sex-dependent infertility, with male carriers rendered sterile by synaptic anomalies during meiosis, whereas female carriers conceive but repeatedly abort. Until now the limited access to relevant fetal oocytes has precluded direct study of meiotic events in female carriers. Because somatic cell nuclear transfer (SCNT) circumvents meiotic problems associated with fertility disturbances in translocation carriers, we used SCNT to generate embryos, fetuses, and calves from a cell line derived from a deceased subfertile X-autosome translocation carrier cow to study the meiotic configurations in carrier oocytes. Data from 33 replicates involving 2470 oocyte-donor-cell complexes were assessed for blastocyst development and of these, 42 blastocysts were transferred to 21 recipients. Fourteen pregnancies were detected on day 35 of gestation. One of these was sacrificed for ovary retrieval on day 94 and three went to term. Features of oocytes from the fetal ovary and from the newborn ovaries were examined. Of the pachytene spreads analyzed, 16%, 82%, and 1.5% exhibited quadrivalent, trivalent/univalent, and bivalent/univalent/univalent structures, respectively, whereas among the diakinesis/metaphase I spreads, 16% ring, 75% chain, and 8.3% bivalent/bivalent configurations were noted, suggesting that the low fertility among female carriers may be related to synaptic errors in a predominant proportion of oocytes. Our results indicate that fibroblasts carrying the X-autosome translocation can be used for SCNT to produce embryos, fetuses, and newborn clones to study such basic aspects of development as meiosis and to generate carriers that cannot easily be reproduced by conventional breeding.


Assuntos
Doenças dos Bovinos , Doenças Genéticas Ligadas ao Cromossomo X , Infertilidade Feminina , Meiose , Modelos Biológicos , Técnicas de Transferência Nuclear , Aberrações dos Cromossomos Sexuais , Animais , Bovinos , Doenças dos Bovinos/genética , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Infertilidade Feminina/genética , Infertilidade Feminina/veterinária , Gravidez , Aberrações dos Cromossomos Sexuais/veterinária
3.
Mol Reprod Dev ; 74(2): 144-53, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16998849

RESUMO

Our previous studies showed that expression patterns of X-linked genes in cultured cells are different from those of their tissues of origin. This investigation analyses the transcription pattern of the X-linked genes BIRC4, GAB3, MECP2, RPS4X, SLC25A6, and XIST in bovine in vitro matured oocytes and in vitro fertilized embryos, and their in vivo counterparts. In vitro-derived pools of mature oocytes and pre-attachment embryos were obtained by: (a) TCM-199/serum with bovine oviductal epithelial cells as co-culture, and (b) synthetic oviductal fluid/BSA. Pools of in vivo-derived morulae and blastocysts were provided by a commercial embryo transfer operation. Total RNA was extracted for quantification of gene-specific transcript levels using real-time quantitative PCR. Statistical analysis was performed using a mixed model factorial ANOVA with alpha = 0.05. The effect of the in vitro environmental conditions on X-linked gene transcription was most evident during the fourth cell cycle, at the period of activation of the embryonic genome, and seemed to be less pronounced at later developmental stages, with the exception of BIRC4. The levels of X-linked genes transcripts in in vivo-derived embryos were lower relative to their in vitro counterparts for all genes tested. Finally, the pattern of expression of XIST in bovine oocytes and embryos was similar to that reported in humans. These results highlight the possibility that X-linked gene expression analysis is a useful tool to monitor the impact of reproductive biotechnologies on the developmental potential of embryos and aid in their improvement.


Assuntos
Blastocisto/fisiologia , Oócitos/fisiologia , Transcrição Gênica , Cromossomo X , Animais , Sequência de Bases , Bovinos , Primers do DNA , DNA Complementar/genética , Desenvolvimento Embrionário , Fertilização in vitro/veterinária , Mórula/fisiologia , Reação em Cadeia da Polimerase , RNA/genética , RNA/isolamento & purificação
4.
Environ Res ; 100(1): 18-38, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16209866

RESUMO

Genital malformations constitute the most common birth defects in man and domestic animals and occur frequently in males since the participation of many genes is required for sex differentiation to proceed in the male direction. The precise dose, timing, and coordination needed for their expression add to the proneness of various stages in male sex differentiation to external influences. The emerging insight, through the identification of genes involved in the sex differentiation cascade, is that over 85% of sex anomalies in human and domestic animal populations are not attributable to chromosome aberrations or to mutations in a known gene. Since a majority of severely malformed individuals are incapable of reproduction, the high rates of these defects have to be results either of new mutations or of collaboration of environmental factors with genes. Increase in specific malformations in domestic animals often indicates increased concentration of liability genes brought together in the conceptus by inbreeding. However, in human populations where inbreeding is not the norm such increases may reflect environment-induced new mutations or interaction of environmental agents with hormone-sensitive genes. This review summarizes the information currently available on the genetics of major events in male sex differentiation and briefly discusses the collaborative role that environment may play in disrupting different components of this process.


Assuntos
Animais Domésticos/embriologia , Meio Ambiente , Feminização , Diferenciação Sexual , Animais , Disruptores Endócrinos , Genitália Masculina/embriologia , Ginecomastia , Humanos , Masculino , Neoplasias Testiculares
5.
Chromosome Res ; 12(3): 275-83, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15125641

RESUMO

Untranslated RNAs transcribed from sense and antisense strands of a gene referred to as X-inactive specific transcript (XIST) play crucial roles in the genetic inactivation and condensation of one of the two X chromosomes in the somatic cells of female mammals. X inactivation is also thought to occur in mammalian male germ cells mainly based on the formation of a condensed structure referred to as a sex body or XY-body, during spermatogenesis. Molecular identity of the sex body, the roles of sense and antisense XIST RNAs in its formation, and the relevance of the sex body to spermatogenesis are not known. Here we report the results of our strand-specific RT-PCR approach to identify the amplicon detected in fetal bovine testes previously referred to as XIST and to test for sense/antisense expression in male and female organs and cell cultures of different sex chromosome constitution. Our results showed that the transcript detected consistently in male gonads and variably in somatic organs represents XIST antisense RNA and that XIST sense and antisense RNAs are co-expressed in female somatic tissues and cultured cells including cells of sex chromosome aneuploids (XXY and XXX). Our results, which differ from those of other investigators in this area, are discussed in the light of the recently reported differences in the expression pattern of murine Xist/Tsix loci and their structural and functional differences in different mammalian species.


Assuntos
RNA Antissenso/biossíntese , RNA não Traduzido/biossíntese , Animais , Bovinos , Técnicas de Cultura de Células , DNA Complementar/análise , Feminino , Feto/anatomia & histologia , Feto/citologia , Expressão Gênica , Masculino , RNA Antissenso/análise , RNA não Traduzido/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Aberrações dos Cromossomos Sexuais , Testículo/embriologia , Testículo/metabolismo , Trissomia
6.
Chromosome Res ; 12(3): 263-73, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15125640

RESUMO

Expression of the X-inactive specific transcript (XIST) gene is a prerequisite step for dosage compensation in mammals, accomplished by silencing one of the two X chromosomes in normal female diploid cells or all X chromosomes in excess of one in sex chromosome aneuploids. Our previous studies showing that XIST expression does not eventuate the inactivation of X-linked genes in fetal bovine testis had suggested that XIST expression may not be an indicator of X inactivation in this species. In this study, we used a semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) approach on cultures of bovine cells with varying sex chromosome constitution (XY, XX, XXY and XXX) to test whether the levels of XIST expressed conform to the number of late replicating (inactive) X chromosomes displayed by proliferating cells in these cultures. Expression patterns of four X-linked genes, including hypoxanthine phosphorybosyl transferase (HPRT), glucose-6-phosphate dehydrogenase (G6PD), zinc finger protein locus on the X (ZFX). and 'selected mouse cDNA on the X' (SMCX), in all these cells were also tested. Results showed that XIST expression was significantly higher (p < 0.05) in XXX cells compared to XX and XXY cells and that G6PD. HPRT, and SMCX loci are subject to X inactivation. The significantly higher levels of ZFX expressed in XXX cells compared to XX and XXY cells (p < 0.05) confirmed that this bovine locus, as human ZFX, escapes X inactivation. However, the levels of XIST and ZFX expressed were not proportional to the X chromosome load in these cells suggesting that X-linked loci escaping inactivation may be regulated at transcription (or post-transcription) level by mechanisms that prevent gene-specific product accumulation beyond certain levels in sex chromosome aneuploids.


Assuntos
Expressão Gênica , Aberrações dos Cromossomos Sexuais , Trissomia/genética , Cromossomo X/genética , Animais , Bovinos , Técnicas de Cultura de Células , Feminino , Feto/citologia , Fibroblastos/citologia , Masculino , Metáfase , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Cromossomo X/metabolismo
7.
Anim Reprod Sci ; 77(1-2): 33-49, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12654526

RESUMO

Various factors including the length of gamete interaction and embryo culture conditions are known to influence the rate of development and sex ratio of mammalian embryos produced in vitro. While the duration of gamete interaction deemed optimum would vary depending upon the species involved and the preferred sex in the outcome of in vitro procedures, the mechanisms favoring the selection of embryos of one sex over the other, or the exact time of post-fertilization stage at which a sex-related difference in growth rate is manifested, are not fully understood. In order to determine the optimum length of gamete co-incubation and the impact of male gamete 'aging' on the growth rate and sex ratio of bovine embryos, a series of experiments was carried out using in vitro matured (IVM) oocytes. In experiment 1, IVM oocytes were co-incubated with sperm from two different bulls for 6, 9, 12 and 18 h and the presumptive zygotes were cultured for approximately 7.5 days (178-180 h post-insemination (hpi)) prior to assessing the cleavage rate, blastocyst yield and the sex ratio of blastocysts in each co-incubation group. In experiment 2, the blastocysts obtained from different co-incubation groups were subjected to differential staining to determine the total cell number (TCN) and the proportion of cells allocated to the inner cell mass (ICM) in male and female embryos to test for sex-related differences in cell proliferation or in differentiation of the two embryonic cell lineages in the blastocysts. In experiment 3, IVM oocytes co-incubated for 6, 9, 12 and 18 h with sperm from a single bull, were cultured for 3 days (72 hpi) and the pre-morulae, categorized according to the specific stage of early development, were sexed to determine if a sex-dependent difference is detectable before the blastocyst stage. In experiment 4, IVM oocytes exposed to prolonged co-incubation (18 and 24 h) were compared with those co-incubated with "aged" (pre-incubated) sperm to determine if "aging sperm" is a factor affecting the growth rate and sex ratio of the out come. Our experiments showed that (1) the shortest period (6 h) allowed the highest proportion of cleaved oocytes to reach the blastocyst stage regardless of the semen donor, (2) males out number females (over 2 to 1) among blastocysts when co-incubation of gametes is reduced to 6 h, (3) the male blastocysts display higher total cell count, and (4) the faster growth rate of the male embryos does not affect the early differentiation and allocation of cells to the ICM. Furthermore, our results indicate that the disruption of the expected 1:1 ratio for male and female embryos in the short term co-incubation group is evident as early as the 4-cell stage and peaks at the 8-cell stage and that prolonged gamete interaction tends to reduce the blastocyst yield to even out the sex ratio. Absence of a significant effect on the yield and sex ratio of blastocysts in the prolonged co-incubation groups irrespective of the type of sperm (aged versus non-aged) used suggest that the preponderance of male embryos in short term gamete interaction group may be dependent upon the in vitro advantage of the Y-chromosome bearing sperm. This advantage, manifested in the precocious development during the pre-morulae stage is confined to a short duration that is neutralized when gamete interaction is allowed to proceed beyond 6h.


Assuntos
Bovinos/embriologia , Fase de Clivagem do Zigoto , Desenvolvimento Embrionário e Fetal , Fertilização in vitro/veterinária , Razão de Masculinidade , Animais , Blastocisto/fisiologia , Contagem de Células , Senescência Celular , Técnicas de Cultura , Feminino , Masculino , Mórula , Espermatozoides/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA