Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 23(3): 302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38151589
2.
Adv Mater ; 35(3): e2206541, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36314393

RESUMO

Antiferroelectric materials, where the transition between antipolar and polar phase is controlled by external electric fields, offer exceptional energy storage capacity with high efficiencies, giant electrocaloric effect, and superb electromechanical response. PbZrO3 is the first discovered and the archetypal antiferroelectric material. Nonetheless, substantial challenges in processing phase pure PbZrO3 have limited studies of the undoped composition, hindering understanding of the phase transitions in this material or unraveling the controversial origins of a low-field ferroelectric phase observed in lead zirconate thin films. Leveraging highly oriented PbZrO3 thin films, a room-temperature ferrielectric phase is observed in the absence of external electric fields, with modulations of amplitude and direction of the spontaneous polarization and large anisotropy for critical electric fields required for phase transition. The ferrielectric state observations are qualitatively consistent with theoretical predictions, and correlate with very high dielectric tunability, and ultrahigh strains (up to 1.1%). This work suggests a need for re-evaluation of the fundamental science of antiferroelectricity in this archetypal material.

3.
ACS Appl Mater Interfaces ; 14(32): 36771-36780, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35929399

RESUMO

Nanoscale polycrystalline thin-film heterostructures are central to microelectronics, for example, metals used as interconnects and high-K oxides used in dynamic random-access memories (DRAMs). The polycrystalline microstructure and overall functional response therein are often dominated by the underlying substrate or layer, which, however, is poorly understood due to the difficulty of characterizing microstructural correlations at a statistically meaningful scale. Here, an automated, high-throughput method, based on the nanobeam electron diffraction technique, is introduced to investigate orientational relations and correlations between crystallinity of materials in polycrystalline heterostructures over a length scale of microns, containing several hundred individual grains. This technique is employed to perform an atomic-scale investigation of the prevalent near-coincident site epitaxy in nanocrystalline ZrO2 heterostructures, the workhorse system in DRAM technology. The power of this analysis is demonstrated by answering a puzzling question: why does polycrystalline ZrO2 transform dramatically from being antiferroelectric on polycrystalline TiN/Si to ferroelectric on amorphous SiO2/Si?

4.
Sci Rep ; 12(1): 165, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997108

RESUMO

The wealth of properties in functional materials at the nanoscale has attracted tremendous interest over the last decades, spurring the development of ever more precise and ingenious characterization techniques. In ferroelectrics, for instance, scanning probe microscopy based techniques have been used in conjunction with advanced optical methods to probe the structure and properties of nanoscale domain walls, revealing complex behaviours such as chirality, electronic conduction or localised modulation of mechanical response. However, due to the different nature of the characterization methods, only limited and indirect correlation has been achieved between them, even when the same spatial areas were probed. Here, we propose a fast and unbiased analysis method for heterogeneous spatial data sets, enabling quantitative correlative multi-technique studies of functional materials. The method, based on a combination of data stacking, distortion correction, and machine learning, enables a precise mesoscale analysis. When applied to a data set containing scanning probe microscopy piezoresponse and second harmonic generation polarimetry measurements, our workflow reveals behaviours that could not be seen by usual manual analysis, and the origin of which is only explainable by using the quantitative correlation between the two data sets.

5.
Small Methods ; 5(12): e2100552, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34928037

RESUMO

Scanning Probe Microscopy (SPM) based techniques probe material properties over microscale regions with nanoscale resolution, ultimately resulting in investigation of mesoscale functionalities. Among SPM techniques, piezoresponse force microscopy (PFM) is a highly effective tool in exploring polarization switching in ferroelectric materials. However, its signal is also sensitive to sample-dependent electrostatic and chemo-electromechanical changes. Literature reports have often concentrated on the evaluation of the Off-field piezoresponse, compared to On-field piezoresponse, based on the latter's increased sensitivity to non-ferroelectric contributions. Using machine learning approaches incorporating both Off- and On-field piezoresponse response as well as Off-field resonance frequency to maximize information, switching piezoresponse in a defect-rich Pb(Zr,Ti)O3 thin film is investigated. As expected, one major contributor to the piezoresponse is mostly ferroelectric, coupled with electrostatic phenomena during On-field measurements. A second component is electrostatic in nature, while a third component is likely due to a superposition of multiple non-ferroelectric processes. The proposed approach will enable deeper understanding of switching phenomena in weakly ferroelectric samples and materials with large chemo-electromechanical response.

6.
Adv Mater ; 32(38): e2002425, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32794355

RESUMO

Machine-learning techniques are more and more often applied to the analysis of complex behaviors in materials research. Frequently used to identify fundamental behaviors within large and multidimensional datasets, these techniques are strictly based on mathematical models. Thus, without inherent physical or chemical meaning or constraints, they are prone to biased interpretation. The interpretability of machine-learning results in materials science, specifically materials' functionalities, can be vastly improved through physical insights and careful data handling. The use of techniques such as dimensional stacking can provide the much needed physical and chemical constraints, while proper understanding of the assumptions imposed by model parameters can help avoid overinterpretation. These concepts are illustrated by application to recently reported ferroelectric switching experiments in PbZr0.2 Ti0.8 O3 thin films. Through systematic analysis and introduction of physical constraints, it is argued that the behaviors present are not necessarily due to exotic mechanisms previously suggested, but rather well described by classical ferroelectric switching superimposed by non-ferroelectric phenomena, such as electrochemical deformation, electrostatic interactions, and/or charge injection.

7.
Science ; 369(6501): 252-253, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32675361
8.
Artigo em Inglês | MEDLINE | ID: mdl-32356744

RESUMO

This work investigates the role of microstructure on the radiation tolerance of relaxor-ferroelectric, lead magnesium niobate-lead titanate, thin films for piezoelectric microelectromechanical system (MEMS) applications. Thin films comprised of 0.7Pb[Mg1/3Nb2/3]O3-0.3PbTiO3 were fabricated via chemical solution deposition on platinized silicon wafers. Processing parameters, i.e., pyrolysis and annealing temperatures and durations, were varied to change the microstructure of the films. The functional response of the films was characterized before and after exposure to gamma radiation [up to 10 Mrad(Si)]. Within the total ionization dose studied, all films showed a <5% change in dielectric response and polarization and <15% change in piezoelectric response, after irradiation. While all films showed substantial radiation tolerance, those with large columnar grains showed the highest dielectric and piezoelectric response and, therefore, might offer the best approach for enabling piezoelectric MEMS devices for applications in radiative environments.

9.
Artigo em Inglês | MEDLINE | ID: mdl-31902760

RESUMO

This work investigates the radiation response of relaxor-ferroelectric, lead magnesium niobate-lead titanate (PMN-PT) thin films, as an alternative material for microelectromechanical system (MEMS) devices in harsh environments. PMN-PT (0.7Pb[Mg1/3Nb2/3]O3-0.3PbTiO3) thin films were fabricated via chemical solution deposition onto platinized Si wafers and exposed to gamma radiation doses up to 10 Mrad(Si). The functional response of the thin films was measured before and after irradiation, and the resulting changes were reported. Within the radiation dose range studied, dielectric permittivity, tunability, and saturated polarization showed <5% change, and saturated piezoelectric coefficient <10% change. Additionally, PMN-PT thin films showed equivalent or superior radiation tolerance compared with lead zirconate titanate thin films previously studied. Higher chemical heterogeneity and greater domain wall mobility are expected to contribute to overall greater radiation tolerance in PMN-PT thin films. Nonlinear trends were found in dielectric and piezoelectric response with increasing dose, showing enhanced response at low doses of radiation before degradation at high doses. However, such variations were also within the experimentally observed dispersion of the data. The results are expected to impact systems to be deployed in areas of high radiation exposure, including systems used in aerospace, medical physics, X-ray/high-energy source measurement tools, and continuous monitoring of nuclear power applications.

10.
ACS Appl Mater Interfaces ; 10(5): 4816-4823, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29322765

RESUMO

Proton-conducting perovskites have been widely studied because of their potential application as solid electrolytes in intermediate temperature solid oxide fuel cells. Structural and chemical heterogeneities can develop during synthesis, device fabrication, or service, which can profoundly affect proton transport. Here, we use time-resolved Kelvin probe force microscopy, scanning transmission electron microscopy, atom probe tomography, and density functional theory calculations to intentionally introduce Ba-deficient planar and spherical defects and link the resultant atomic structure with proton transport behavior in both stoichiometric and nonstoichiometric epitaxial, yttrium-doped barium zirconate thin films. The defects were intentionally induced through high-temperature annealing treatment, while maintaining the epitaxial single crystalline structure of the films, with an overall relaxation in the atomic structure. The annealed samples showed smaller magnitudes of local lattice distortions because of the formation of proton polarons, thereby leading to decreased proton-trapping effect. This resulted in a decrease in the activation energy for proton transport, leading to faster proton transport.

11.
J Am Ceram Soc ; 101(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38505649

RESUMO

The proton conductivity in functional oxides is crucial in determining electrochemistry and transport phenomena in a number of applications such as catalytic devices and fuel cells. However, single characterization techniques are usually limited in detecting the ionic dynamics at the full range of environmental conditions. In this report, we probe and uncover the links between the microstructure of nanostructured ceria (NC) and parameters that govern its electrochemical reaction and proton transport, by coupling experimental data obtained with time-resolved Kelvin probe force microscopy (tr-KPFM), electrochemical impedance spectroscopy (EIS), and finite element analysis. It is found that surface morphology determines the water splitting rate and proton conductivity at 25 °C and wet conditions, where protons are mainly generated and transported within surface physisorbed water layers. However, at higher temperature (i.e., ≥125 °C) and dry conditions, when physisorbed water evaporates, grain size and crystallographic orientation become significant factors. Specifically, the proton generation rate is negatively correlated with the grain size, whereas proton diffusivity is facilitated by surface {111} planes and additional conduction pathways offered by cracks and open pores connected to the surface.

12.
Sci Rep ; 7(1): 5308, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28706227

RESUMO

The ability to tailor the performance of functional materials, such as semiconductors, via careful manipulation of defects has led to extraordinary advances in microelectronics. Functional metal oxides are no exception - protonic-defect-conducting oxides find use in solid oxide fuel cells (SOFCs) and oxygen-deficient high-temperature superconductors are poised for power transmission and magnetic imaging applications. Similarly, the advantageous functional responses in ferroelectric materials that make them attractive for use in microelectromechanical systems (MEMS), logic elements, and environmental energy harvesting, are derived from interactions of defects with other defects (such as domain walls) and with the lattice. Chemical doping has traditionally been employed to study the effects of defects in functional materials, but complications arising from compositional heterogeneity often make interpretation of results difficult. Alternatively, irradiation is a versatile means of evaluating defect interactions while avoiding the complexities of doping. Here, a generalized phenomenological model is developed to quantify defect interactions and compare material performance in functional oxides as a function of radiation dose. The model is demonstrated with historical data from literature on ferroelectrics, and expanded to functional materials for SOFCs, mixed ionic-electronic conductors (MIECs), He-ion implantation, and superconductors. Experimental data is used to study microstructural effects on defect interactions in ferroelectrics.

13.
Artigo em Inglês | MEDLINE | ID: mdl-28708541

RESUMO

This paper reports on the ionizing radiation effects in lead-zirconate-titanate (PZT) with varied top electrode material and bias condition during radiation. A technique to characterize the piezoelectric performance of films unclamped from the substrate is described, and used to demonstrate the effects of radiation on the material's electromechanical behavior. Both platinum and iridium oxide top electrodes were examined, and iridium oxide appears to significantly mitigate radiation-induced damage that is observed in platinum top electrode samples. This mitigation of radiation damage is attributed to the reduced number of oxygen vacancies within the PZT films when an iridium oxide top electrode is used. Devices with applied bias during radiation were compared with devices under applied bias only. Applied bias appears to slightly enhance the electromechanical response in the negative bias polarity for irradiated platinum electrode samples suggesting that the bias can cause defects to orient and therefore improve electromechanical response. Ultimately, iridium oxide top electrodes appear to mitigate radiation damage.

14.
Nano Lett ; 15(6): 3669-76, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26027805

RESUMO

The electrochemical reactivity of solid surfaces underpins functionality of a broad spectrum of materials and devices ranging from energy storage and conversion, to sensors and catalytic devices. The surface electrochemistry is, however, a complex process, controlled by the interplay of charge generation, field-controlled and diffusion-controlled transport. Here we explore the fundamental mechanisms of electrochemical reactivity on nanocrystalline ceria, using the synergy of nanofabricated devices and time-resolved Kelvin probe force microscopy (tr-KPFM), an approach we refer to as energy discovery platform. Through tr-KPFM, the surface potential mapping in both the space and time domains and current variation over time are obtained, enabling analysis of local ionic and electronic transport and their dynamic behavior on the 10 ms to 10 s scale. Based on their different responses in the time domain, conduction mechanisms can be separated and identified in a variety of environmental conditions, such as humidity and temperature. The theoretical modeling of ion transport through finite element method allows for creation of a minimal model consistent with observed phenomena, and establishing of the dynamic characteristics of the process, including mobility and diffusivity of charged species. The future potential of the energy discovery platforms is also discussed.

15.
Chem Soc Rev ; 43(7): 2125-40, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24121276

RESUMO

Chemical solution deposition (CSD) provides a low-cost, versatile approach for processing of thin and ultrathin ferroelectric films, as well as short and high aspect ratio ferroelectric nanostructures. This review discusses the state of the art in the processing of ferroelectric oxide thin films and nanostructures by CSD, with special emphasis on nucleation and growth phenomena. The effects of choice of precursor solution, substrate and bottom electrode stack, and thermal treatment conditions on the nucleation and growth are examined. Furthermore, methods to control ferroelectric thin film's microstructure, including phase content, texture, grain size and chemical homogeneity, are reviewed. Lastly, current CSD-based methods for processing of ferroelectric oxide nanostructures are presented with special consideration of the structural development, as well as advantages and shortcomings associated with each method. Lead zirconate-titanate, Pb(ZrxTi1-x)O3 (PZT), and barium titanate, BaTiO3 (BT), are used throughout the discussion, as specific examples for CSD processing of perovskite ferroelectrics.

16.
Adv Mater ; 24(9): 1160-5, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22279013

RESUMO

A new nano-manufacturing method for the creation of high aspect-ratio ferroelectric (PbZr0.52Ti0.48O3) nanostructures by use of polymeric templates is presented. The ferroelectric response is characterized by band-excitation PFM, supporting the high quality of the nanostructures. Piezoelectric size effects for ferroelectric materials are reported for the first time in nanotube configuration (critical thickness ∼15 nm) and compared to thin films' response.


Assuntos
Chumbo/química , Nanotecnologia/métodos , Nanotubos/química , Oxigênio/química , Titânio/química , Zircônio/química , Cristalização , Eletricidade , Nanotubos/ultraestrutura , Polímeros/química
17.
Adv Mater ; 23(33): 3786-90, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21766356

RESUMO

A complementary metal-oxide-semico-nductor (CMOS)-compatible method for the direct fabrication of arbitrary-shaped Pb(Zr0.52 Ti0.48)O3 and PbTiO3 ferroelectric/piezoelectric nanostructures on plastic, silicon, and soda-lime glass substrates is reported. Thermochemical nanolithography is used to induce nanoscale crystallization of sol-gel precursor films. Ferroelectric lines with width ≥30 nm, spheres with diameter ≥10 nm, and densities up to 213 Gb in(-2) are produced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA