RESUMO
PURPOSE: Although single nucleotide polymorphisms (SNPs) of NBS1 have been associated with susceptibility to lung and upper aerodigestive tract (UADT) cancers, their relations to cancer survival and measures of effect are largely unknown. METHODS: Using follow-up data from 611 lung cancer cases and 601 UADT cancer cases from a population-based case-control study in Los Angeles, we prospectively evaluated associations of tobacco smoking and 5 NBS1 SNPs with all-cause mortality. Mortality data were obtained from the Social Security Death Index. We used Cox regression to estimate adjusted hazard ratios (HR) for main effects and ratios of hazard ratios (RHR) derived from product terms to assess hazard ratio variations by each SNP. Bayesian methods were used to account for multiple comparisons. RESULTS: We observed 406 (66 %) deaths in lung cancer cases and 247 (41 %) deaths in UADT cancer cases with median survival of 1.43 and 1.72 years, respectively. Ever tobacco smoking was positively associated with mortality for both cancers. We observed an upward dose-response association between smoking pack-years and mortality in UADT squamous cell carcinoma. The adjusted HR relating smoking to mortality in non-small cell lung cancer (NSCLC) was greater for cases with the GG genotype of NBS1 rs1061302 than for cases with AA/AG genotypes (semi-Bayes adjusted RHR = 1.97; 95 % limits = 1.14, 3.41). CONCLUSIONS: A history of tobacco smoking at cancer diagnosis was associated with mortality among patients with lung cancer or UADT squamous cell carcinoma. The HR relating smoking to mortality appeared to vary with the NBS1 rs1061302 genotype among NSCLC cases.
Assuntos
Proteínas de Ciclo Celular/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único/genética , Fumar/genética , Adolescente , Adulto , Idoso , Teorema de Bayes , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Los Angeles , Masculino , Pessoa de Meia-Idade , Fumar/efeitos adversos , Adulto JovemRESUMO
Constituents of tobacco smoke can cause DNA double-strand breaks (DSBs), leading to tumorigenesis. The NBS1 gene product is a vital component in DSB detection and repair, thus genetic variations may influence cancer development. We examined the associations between NBS1 polymorphisms and haplotypes and newly incident smoking-related cancers in three case-control studies (Los Angeles: 611 lung and 601 upper aero-digestive tract (UADT) cancer cases and 1040 controls; Memorial Sloan-Kettering Cancer Center: 227 bladder cancer cases and 211 controls and Taixing, China: 218 esophagus, 206 stomach, 204 liver cancer cases and 415 controls). rs1061302 was associated with cancers of the lung [adjusted odds ratio (OR(adj)) = 1.6, 95% confidence interval (CI): 1.2, 2.4], larynx (OR(adj) = 0.56, 95% CI: 0.32, 0.97) and liver (OR(adj) = 1.7, 95% CI: 1.0, 2.9). Additionally, positive associations were found for rs709816 with bladder cancer (OR(adj) = 4.2, 95% CI: 1.4, 12) and rs1063054 with lung cancer (OR(adj) = 1.6, 95% CI: 1.0, 2.3). Some associations in lung and stomach cancers varied with smoking status. CAC haplotype was positively associated with smoking-related cancers: lung (OR(adj) = 1.7, 95% CI: 1.1, 2.9) and UADT (OR(adj) = 2.0, 95% CI: 1.1, 3.7), specifically, oropharynx (OR(adj) = 2.1, 95% CI: 1.0, 4.2) and larynx (OR(adj) = 4.8, 95% CI: 1.7, 14). Bayesian false-discovery probabilities were calculated to assess Type I error. It appears that NBS1 polymorphisms and haplotypes may be associated with smoking-related cancers and that these associations may differ by smoking status. Our findings also suggest that single-nucleotide polymorphisms located in the binding region of the MRE-RAD50-NBS1 complex or microRNA targeted pathways may influence tumor development. These hypotheses should be further examined in functional studies.