Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Cardiovasc Magn Reson ; 26(2): 101048, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878970

RESUMO

BACKGROUND: Metabolic diseases can negatively alter epicardial fat accumulation and composition, which can be probed using quantitative cardiac chemical shift encoded (CSE) cardiovascular magnetic resonance (CMR) by mapping proton-density fat fraction (PDFF). To obtain motion-resolved high-resolution PDFF maps, we proposed a free-running cardiac CSE-CMR framework at 3T. To employ faster bipolar readout gradients, a correction for gradient imperfections was added using the gradient impulse response function (GIRF) and evaluated on intermediate images and PDFF quantification. METHODS: Ten minutes free-running cardiac 3D radial CSE-CMR acquisitions were compared in vitro and in vivo at 3T. Monopolar and bipolar readout gradient schemes provided 8 echoes (TE1/ΔTE = 1.16/1.96 ms) and 13 echoes (TE1/ΔTE = 1.12/1.07 ms), respectively. Bipolar-gradient free-running cardiac fat and water images and PDFF maps were reconstructed with or without GIRF correction. PDFF values were evaluated in silico, in vitro on a fat/water phantom, and in vivo in 10 healthy volunteers and 3 diabetic patients. RESULTS: In monopolar mode, fat-water swaps were demonstrated in silico and confirmed in vitro. Using bipolar readout gradients, PDFF quantification was reliable and accurate with GIRF correction with a mean bias of 0.03% in silico and 0.36% in vitro while it suffered from artifacts without correction, leading to a PDFF bias of 4.9% in vitro and swaps in vivo. Using bipolar readout gradients, in vivo PDFF of epicardial adipose tissue was significantly lower compared to subcutaneous fat (80.4 ± 7.1% vs 92.5 ± 4.3%, P < 0.0001). CONCLUSIONS: Aiming for an accurate PDFF quantification, high-resolution free-running cardiac CSE-MRI imaging proved to benefit from bipolar echoes with k-space trajectory correction at 3T. This free-breathing acquisition framework enables to investigate epicardial adipose tissue PDFF in metabolic diseases.

2.
Int J Cardiovasc Imaging ; 40(4): 907-920, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427272

RESUMO

According to updated Lake-Louise Criteria, impaired regional myocardial function serves as a supportive criterion in diagnosing myocarditis. This study aimed to assess visual regional wall motional abnormalities (RWMA) and novel quantitative regional longitudinal peak strain (RLS) for risk stratification in the clinical setting of myocarditis. In patients undergoing CMR and meeting clinical criteria for suspected myocarditis global longitudinal strain (GLS), late gadolinium enhancement (LGE), RWMA and RLS were assessed in the anterior, septal, inferior, and lateral regions and correlated to the occurrence of major adverse cardiac events (MACE), including heart failure hospitalization, sustained ventricular tachycardia, recurrent myocarditis, and all-cause death. In 690 consecutive patients (age: 48.0 ± 16.0 years; 37.7% female) with suspected myocarditis impaired RLS was correlated with RWMA and LV-GLS but not with the presence of LGE. At median follow up of 3.8 years, MACE occurred in 116 (16.8%) patients. Both, RWMA and RLS in anterior-, septal-, inferior-, and lateral- locations were univariately associated with outcomes (all p < 0.001), but not after adjusting for clinical characteristics and LV-GLS. In the subgroup of patients with normal LV function, RWMA were not predictive of outcomes, whereas septal RLS had incremental and independent prognostic value over clinical characteristics (HRadjusted = 1.132, 95% CI 1.020-1.256; p = 0.020). RWMA and RLS can be used to assess regional impairment of myocardial function in myocarditis but are of limited prognostic value in the overall population. However, in the subgroup of patients with normal LV function, septal RLS represents a distinctive marker of regional LV dysfunction, offering potential for risk-stratification.


Assuntos
Imagem Cinética por Ressonância Magnética , Miocardite , Valor Preditivo dos Testes , Função Ventricular Esquerda , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Miocardite/fisiopatologia , Miocardite/diagnóstico por imagem , Miocardite/mortalidade , Miocardite/complicações , Adulto , Prognóstico , Fatores de Risco , Medição de Risco , Fatores de Tempo , Estudos Retrospectivos , Meios de Contraste , Contração Miocárdica , Recidiva , Idoso , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/mortalidade , Reprodutibilidade dos Testes
3.
Magn Reson Med ; 92(1): 215-225, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38321594

RESUMO

PURPOSE: Determine the correct mathematical phase description for balanced steady-state free precession (bSSFP) signals in multi-compartment systems. THEORY AND METHODS: Based on published bSSFP signal models, different phase descriptions can be formulated: one predicting the presence and the other predicting the absence of destructive interference effects in multi-compartment systems. Numerical simulations of bSSFP signals of water and acetone were performed to evaluate the predictions of these different phase descriptions. For experimental validation, bSSFP profiles were measured at 3T using phase-cycled bSSFP acquisitions performed in a phantom containing mixtures of water and acetone, which replicates a system with two signal components. Localized single voxel MRS was performed at 7T to determine the relative chemical shift of the acetone-water mixtures. RESULTS: Based on the choice of phase description, the simulated bSSFP profiles of water-acetone mixtures varied significantly, either displaying or lacking destructive interference effects, as predicted theoretically. In phantom experiments, destructive interference was consistently observed in the measured bSSFP profiles of water-acetone mixtures, supporting the theoretical description that predicts such interference effects. The connection between the choice of phase description and predicted observation enables unambiguous experimental identification of the correct phase description for multi-compartment bSSFP profiles, which is consistent with the Bloch equations. CONCLUSION: The study emphasizes that consistent phase descriptions are crucial for accurately describing multi-compartment bSSFP signals, as incorrect phase descriptions result in erroneous predictions.


Assuntos
Acetona , Algoritmos , Simulação por Computador , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Água , Imageamento por Ressonância Magnética/métodos , Água/química , Acetona/química , Acetona/análise , Humanos , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
4.
J Cardiovasc Magn Reson ; 26(1): 101006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38309581

RESUMO

BACKGROUND: Four-dimensional (4D) flow magnetic resonance imaging (MRI) often relies on the injection of gadolinium- or iron-oxide-based contrast agents to improve vessel delineation. In this work, a novel technique is developed to acquire and reconstruct 4D flow data with excellent dynamic visualization of blood vessels but without the need for contrast injection. Synchronization of Neighboring Acquisitions by Physiological Signals (SyNAPS) uses pilot tone (PT) navigation to retrospectively synchronize the reconstruction of two free-running three-dimensional radial acquisitions, to create co-registered anatomy and flow images. METHODS: Thirteen volunteers and two Marfan syndrome patients were scanned without contrast agent using one free-running fast interrupted steady-state (FISS) sequence and one free-running phase-contrast MRI (PC-MRI) sequence. PT signals spanning the two sequences were recorded for retrospective respiratory motion correction and cardiac binning. The magnitude and phase images reconstructed, respectively, from FISS and PC-MRI, were synchronized to create SyNAPS 4D flow datasets. Conventional two-dimensional (2D) flow data were acquired for reference in ascending (AAo) and descending aorta (DAo). The blood-to-myocardium contrast ratio, dynamic vessel area, net volume, and peak flow were used to compare SyNAPS 4D flow with Native 4D flow (without FISS information) and 2D flow. A score of 0-4 was given to each dataset by two blinded experts regarding the feasibility of performing vessel delineation. RESULTS: Blood-to-myocardium contrast ratio for SyNAPS 4D flow magnitude images (1.5 ± 0.3) was significantly higher than for Native 4D flow (0.7 ± 0.1, p < 0.01) and was comparable to 2D flow (2.3 ± 0.9, p = 0.02). Image quality scores of SyNAPS 4D flow from the experts (M.P.: 1.9 ± 0.3, E.T.: 2.5 ± 0.5) were overall significantly higher than the scores from Native 4D flow (M.P.: 1.6 ± 0.6, p = 0.03, E.T.: 0.8 ± 0.4, p < 0.01) but still significantly lower than the scores from the reference 2D flow datasets (M.P.: 2.8 ± 0.4, p < 0.01, E.T.: 3.5 ± 0.7, p < 0.01). The Pearson correlation coefficient between the dynamic vessel area measured on SyNAPS 4D flow and that from 2D flow was 0.69 ± 0.24 for the AAo and 0.83 ± 0.10 for the DAo, whereas the Pearson correlation between Native 4D flow and 2D flow measurements was 0.12 ± 0.48 for the AAo and 0.08 ± 0.39 for the DAo. Linear correlations between SyNAPS 4D flow and 2D flow measurements of net volume (r2 = 0.83) and peak flow (r2 = 0.87) were larger than the correlations between Native 4D flow and 2D flow measurements of net volume (r2 = 0.79) and peak flow (r2 = 0.76). CONCLUSION: The feasibility and utility of SyNAPS were demonstrated for joint whole-heart anatomical and flow MRI without requiring electrocardiography gating, respiratory navigators, or contrast agents. Using SyNAPS, a high-contrast anatomical imaging sequence can be used to improve 4D flow measurements that often suffer from poor delineation of vessel boundaries in the absence of contrast agents.


Assuntos
Interpretação de Imagem Assistida por Computador , Síndrome de Marfan , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Humanos , Velocidade do Fluxo Sanguíneo , Adulto , Masculino , Síndrome de Marfan/fisiopatologia , Feminino , Adulto Jovem , Estudos de Casos e Controles , Angiografia por Ressonância Magnética , Reprodutibilidade dos Testes , Estudos de Viabilidade , Hemodinâmica , Imagem de Perfusão/métodos , Meios de Contraste/administração & dosagem , Fatores de Tempo , Pessoa de Meia-Idade
5.
Magn Reson Med Sci ; 23(2): 225-237, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682776

RESUMO

Free-running 5D whole-heart coronary MR angiography (MRA) is gaining in popularity because it reduces scanning complexity by removing the need for specific slice orientations, respiratory gating, or cardiac triggering. At 3T, a gradient echo (GRE) sequence is preferred in combination with contrast injection. However, neither the injection scheme of the gadolinium (Gd) contrast medium, the choice of the RF excitation angle, nor the dedicated image reconstruction parameters have been established for 3T GRE free-running 5D whole-heart coronary MRA. In this study, a Gd injection scheme, RF excitation angles of lipid-insensitive binominal off-resonance RF excitation (LIBRE) pulse for valid fat suppression and continuous data acquisition, and compressed-sensing reconstruction regularization parameters were optimized for contrast-enhanced free-running 5D whole-heart coronary MRA using a GRE sequence at 3T. Using this optimized protocol, contrast-enhanced free-running 5D whole-heart coronary MRA using a GRE sequence is feasible with good image quality at 3T.


Assuntos
Meios de Contraste , Coração , Coração/diagnóstico por imagem , Angiografia Coronária/métodos , Angiografia por Ressonância Magnética/métodos , Gadolínio
7.
J Cardiovasc Magn Reson ; 25(1): 49, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37587516

RESUMO

BACKGROUND: Recent evidence underlined the importance of right (RV) involvement in suspected myocarditis. We aim to analyze the possible incremental prognostic value from RV global longitudinal strain (GLS) by CMR. METHODS: Patients referred for CMR, meeting clinical criteria for suspected myocarditis and no other cardiomyopathy were enrolled in a dual-center register cohort study. Ejection fraction (EF), GLS and tissue characteristics were assessed in both ventricles to assess their association to first major adverse cardiovascular events (MACE) including hospitalization for heart failure (HF), ventricular tachycardia (VT), recurrent myocarditis and death. RESULTS: Among 659 patients (62.8% male; 48.1 ± 16.1 years), RV GLS was impaired (> - 15.4%) in 144 (21.9%) individuals, of whom 76 (58%), 108 (77.1%), 27 (18.8%) and 40 (32.8%) had impaired right ventricular ejection fraction (RVEF), impaired left ventricular ejection fraction (LVEF), RV late gadolinium enhancement (LGE) or RV edema, respectively. After a median observation time of 3.7 years, 45 (6.8%) patients were hospitalized for HF, 42 (6.4%) patients died, 33 (5%) developed VT and 16 (2.4%) had recurrent myocarditis. Impaired RV GLS was associated with MACE (HR = 1.07, 95% CI 1.04-1.10; p < 0.001), HF hospitalization (HR = 1.17, 95% CI 1.12-1.23; p < 0.001), and death (HR = 1.07, 95% CI 1.02-1.12; p = 0.004), but not with VT and recurrent myocarditis in univariate analysis. RV GLS lost its association with outcomes, when adjusted for RVEF, LVEF, LV GLS and LV LGE extent. CONCLUSION: RV strain is associated with MACE, HF hospitalization and death but has neither independent nor incremental prognostic value after adjustment for RV and LV function and tissue characteristics. Therefore, assessing RV GLS in the setting of myocarditis has only limited value.


Assuntos
Insuficiência Cardíaca , Miocardite , Taquicardia Ventricular , Humanos , Masculino , Feminino , Miocardite/diagnóstico por imagem , Volume Sistólico , Estudos de Coortes , Meios de Contraste , Gadolínio , Função Ventricular Esquerda , Função Ventricular Direita , Valor Preditivo dos Testes , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/terapia , Espectroscopia de Ressonância Magnética
8.
Magn Reson Med ; 90(6): 2348-2361, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37496187

RESUMO

PURPOSE: To develop SPARCQ (Signal Profile Asymmetries for Rapid Compartment Quantification), a novel approach to quantify fat fraction (FF) using asymmetries in the phase-cycled balanced SSFP (bSSFP) profile. METHODS: SPARCQ uses phase-cycling to obtain bSSFP frequency profiles, which display asymmetries in the presence of fat and water at certain TRs. For each voxel, the measured signal profile is decomposed into a weighted sum of simulated profiles via multi-compartment dictionary matching. Each dictionary entry represents a single-compartment bSSFP profile with a specific off-resonance frequency and relaxation time ratio. Using the results of dictionary matching, the fractions of the different off-resonance components are extracted for each voxel, generating quantitative maps of water and FF and banding-artifact-free images for the entire image volume. SPARCQ was validated using simulations, experiments in a water-fat phantom and in knees of healthy volunteers. Experimental results were compared with reference proton density FFs obtained with 1 H-MRS (phantoms) and with multiecho gradient-echo MRI (phantoms and volunteers). SPARCQ repeatability was evaluated in six scan-rescan experiments. RESULTS: Simulations showed that FF quantification is accurate and robust for SNRs greater than 20. Phantom experiments demonstrated good agreement between SPARCQ and gold standard FFs. In volunteers, banding-artifact-free quantitative maps and water-fat-separated images obtained with SPARCQ and ME-GRE demonstrated the expected contrast between fatty and non-fatty tissues. The coefficient of repeatability of SPARCQ FF was 0.0512. CONCLUSION: SPARCQ demonstrates potential for fat quantification using asymmetries in bSSFP profiles and may be a promising alternative to conventional FF quantification techniques.

9.
Int J Cardiovasc Imaging ; 39(10): 1963-1977, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37322317

RESUMO

Cardiac magnetic resonance (CMR) four-dimensional (4D) flow is a novel method for flow quantification potentially helpful in management of mitral valve regurgitation (MVR). In this systematic review, we aimed to depict the clinical role of intraventricular 4D-flow in MVR. The reproducibility, technical aspects, and comparison against conventional techniques were evaluated. Published studies on SCOPUS, MEDLINE, and EMBASE were included using search terms on 4D-flow CMR in MVR. Out of 420 screened articles, 18 studies fulfilled our inclusion criteria. All studies (n = 18, 100%) assessed MVR using 4D-flow intraventricular annular inflow (4D-flowAIM) method, which calculates the regurgitation by subtracting the aortic forward flow from the mitral forward flow. Thereof, 4D-flow jet quantification (4D-flowjet) was assessed in 5 (28%), standard 2D phase-contrast (2D-PC) flow imaging in 8 (44%) and the volumetric method (the deviation of left ventricle stroke volume and right ventricular stroke volume) in 2 (11%) studies. Inter-method correlations among the 4 MVR quantification methods were heterogeneous across studies, ranging from moderate to excellent correlations. Two studies compared 4D-flowAIM to echocardiography with moderate correlation. In 12 (63%) studies the reproducibility of 4D-flow techniques in quantifying MVR was studied. Thereof, 9 (75%) studies investigated the reproducibility of the 4D-flowAIM method and the majority (n = 7, 78%) reported good to excellent intra- and inter-reader reproducibility. Intraventricular 4D-flowAIM provides high reproducibility with heterogeneous correlations to conventional quantification methods. Due to the absence of a gold standard and unknown accuracies, future longitudinal outcome studies are needed to assess the clinical value of 4D-flow in the clinical setting of MVR.

10.
Eur Radiol Exp ; 7(1): 25, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37211577

RESUMO

PURPOSE: To develop an isotropic three-dimensional (3D) T2 mapping technique for the quantitative assessment of the composition of knee cartilage with high accuracy and precision. METHODS: A T2-prepared water-selective isotropic 3D gradient-echo pulse sequence was used to generate four images at 3 T. These were used for three T2 map reconstructions: standard images with an analytical T2 fit (AnT2Fit); standard images with a dictionary-based T2 fit (DictT2Fit); and patch-based-denoised images with a dictionary-based T2 fit (DenDictT2Fit). The accuracy of the three techniques was first optimized in a phantom study against spin-echo imaging, after which knee cartilage T2 values and coefficients of variation (CoV) were assessed in ten subjects in order to establish accuracy and precision in vivo. Data given as mean ± standard deviation. RESULTS: After optimization in the phantom, whole-knee cartilage T2 values of the healthy volunteers were 26.6 ± 1.6 ms (AnT2Fit), 42.8 ± 1.8 ms (DictT2Fit, p < 0.001 versus AnT2Fit), and 40.4 ± 1.7 ms (DenDictT2Fit, p = 0.009 versus DictT2Fit). The whole-knee T2 CoV reduced from 51.5% ± 5.6% to 30.5 ± 2.4 and finally to 13.1 ± 1.3%, respectively (p < 0.001 between all). The DictT2Fit improved the data reconstruction time: 48.7 ± 11.3 min (AnT2Fit) versus 7.3 ± 0.7 min (DictT2Fit, p < 0.001). Very small focal lesions were observed in maps generated with DenDictT2Fit. CONCLUSIONS: Improved accuracy and precision for isotropic 3D T2 mapping of knee cartilage were demonstrated by using patch-based image denoising and dictionary-based reconstruction. KEY POINTS: • Dictionary T2 fitting improves the accuracy of three-dimensional (3D) knee T2 mapping. • Patch-based denoising results in high precision in 3D knee T2 mapping. • Isotropic 3D knee T2 mapping enables the visualization of small anatomical details.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Voluntários Saudáveis
11.
Magn Reson Med ; 90(3): 922-938, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37103471

RESUMO

PURPOSE: To develop a free-running 3D radial whole-heart multiecho gradient echo (ME-GRE) framework for cardiac- and respiratory-motion-resolved fat fraction (FF) quantification. METHODS: (NTE = 8) readouts optimized for water-fat separation and quantification were integrated within a continuous non-electrocardiogram-triggered free-breathing 3D radial GRE acquisition. Motion resolution was achieved with pilot tone (PT) navigation, and the extracted cardiac and respiratory signals were compared to those obtained with self-gating (SG). After extra-dimensional golden-angle radial sparse parallel-based image reconstruction, FF, R2 *, and B0 maps, as well as fat and water images were generated with a maximum-likelihood fitting algorithm. The framework was tested in a fat-water phantom and in 10 healthy volunteers at 1.5 T using NTE = 4 and NTE = 8 echoes. The separated images and maps were compared with a standard free-breathing electrocardiogram (ECG)-triggered acquisition. RESULTS: The method was validated in vivo, and physiological motion was resolved over all collected echoes. Across volunteers, PT provided respiratory and cardiac signals in agreement (r = 0.91 and r = 0.72) with SG of the first echo, and a higher correlation to the ECG (0.1% of missed triggers for PT vs. 5.9% for SG). The framework enabled pericardial fat imaging and quantification throughout the cardiac cycle, revealing a decrease in FF at end-systole by 11.4% ± 3.1% across volunteers (p < 0.0001). Motion-resolved end-diastolic 3D FF maps showed good correlation with ECG-triggered measurements (FF bias of -1.06%). A significant difference in free-running FF measured with NTE = 4 and NTE = 8 was found (p < 0.0001 in sub-cutaneous fat and p < 0.01 in pericardial fat). CONCLUSION: Free-running fat fraction mapping was validated at 1.5 T, enabling ME-GRE-based fat quantification with NTE = 8 echoes in 6:15 min.


Assuntos
Coração , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Eletrocardiografia , Processamento de Imagem Assistida por Computador/métodos , Respiração , Imageamento Tridimensional/métodos
13.
Front Cardiovasc Med ; 9: 1052068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568555

RESUMO

Four-dimensional flow magnetic resonance imaging (MRI) has evolved as a non-invasive imaging technique to visualize and quantify blood flow in the heart and vessels. Hemodynamic parameters derived from 4D flow MRI, such as net flow and peak velocities, but also kinetic energy, turbulent kinetic energy, viscous energy loss, and wall shear stress have shown to be of diagnostic relevance for cardiovascular diseases. 4D flow MRI, however, has several limitations. Its long acquisition times and its limited spatio-temporal resolutions lead to inaccuracies in velocity measurements in small and low-flow vessels and near the vessel wall. Additionally, 4D flow MRI requires long post-processing times, since inaccuracies due to the measurement process need to be corrected for and parameter quantification requires 2D and 3D contour drawing. Several machine learning (ML) techniques have been proposed to overcome these limitations. Existing scan acceleration methods have been extended using ML for image reconstruction and ML based super-resolution methods have been used to assimilate high-resolution computational fluid dynamic simulations and 4D flow MRI, which leads to more realistic velocity results. ML efforts have also focused on the automation of other post-processing steps, by learning phase corrections and anti-aliasing. To automate contour drawing and 3D segmentation, networks such as the U-Net have been widely applied. This review summarizes the latest ML advances in 4D flow MRI with a focus on technical aspects and applications. It is divided into the current status of fast and accurate 4D flow MRI data generation, ML based post-processing tools for phase correction and vessel delineation and the statistical evaluation of blood flow.

14.
Commun Biol ; 5(1): 10, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013537

RESUMO

Hyperpolarized [1-13C]pyruvate enables direct in vivo assessment of real-time liver enzymatic activities by 13C magnetic resonance. However, the technique usually requires the injection of a highly supraphysiological dose of pyruvate. We herein demonstrate that liver metabolism can be measured in vivo with hyperpolarized [1-13C]pyruvate administered at two- to three-fold the basal plasma concentration. The flux through pyruvate dehydrogenase, assessed by 13C-labeling of bicarbonate in the fed condition, was found to be saturated or partially inhibited by supraphysiological doses of hyperpolarized [1-13C]pyruvate. The [13C]bicarbonate signal detected in the liver of fasted rats nearly vanished after treatment with a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, indicating that the signal originates from the flux through PEPCK. In addition, the normalized [13C]bicarbonate signal in fasted untreated animals is dose independent across a 10-fold range, highlighting that PEPCK and pyruvate carboxylase are not saturated and that hepatic gluconeogenesis can be directly probed in vivo with hyperpolarized [1-13C]pyruvate.


Assuntos
Bicarbonatos/metabolismo , Privação de Alimentos , Gluconeogênese , Fígado/metabolismo , Ácido Pirúvico/metabolismo , Animais , Biomarcadores/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
15.
NMR Biomed ; 34(11): e4584, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34245482

RESUMO

It was recently demonstrated that nonpersistent radicals can be generated in frozen solutions of metabolites such as pyruvate by irradiation with UV light, enabling radical-free dissolution dynamic nuclear polarization. Although pyruvate is endogenous, the presence of pyruvate may interfere with metabolic processes or the detection of pyruvate as a metabolic product, making it potentially unsuitable as a polarizing agent. Therefore, the aim of the current study was to characterize solutions containing endogenously occurring alternatives to pyruvate as UV-induced nonpersistent radical precursors for in vivo hyperpolarized MRI. The metabolites alpha-ketovalerate (αkV) and alpha-ketobutyrate (αkB) are analogues of pyruvate and were chosen as potential radical precursors. Sample formulations containing αkV and αkB were studied with UV-visible spectroscopy, irradiated with UV light, and their nonpersistent radical yields were quantified with electron spin resonance and compared with pyruvate. The addition of 13 C-labeled substrates to the sample matrix altered the radical yield of the precursors. Using αkB increased the 13 C-labeled glucose liquid-state polarization to 16.3% ± 1.3% compared with 13.3% ± 1.5% obtained with pyruvate, and 8.9% ± 2.1% with αkV. For [1-13 C]butyric acid, polarization levels of 12.1% ± 1.1% for αkV, 12.9% ± 1.7% for αkB, 1.5% ± 0.2% for OX063 and 18.7% ± 0.7% for Finland trityl, were achieved. Hyperpolarized [1-13 C]butyrate metabolism in the heart revealed label incorporation into [1-13 C]acetylcarnitine, [1-13 C]acetoacetate, [1-13 C]butyrylcarnitine, [5-13 C]glutamate and [5-13 C]citrate. This study demonstrates the potential of αkV and αkB as endogenous polarizing agents for in vivo radical-free hyperpolarized MRI. UV-induced, nonpersistent radicals generated in endogenous metabolites enable high polarization without requiring radical filtration, thus simplifying the quality-control tests in clinical applications.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico/análogos & derivados , Raios Ultravioleta , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Radicais Livres , Metaboloma , Espectrofotometria Ultravioleta , Fatores de Tempo
16.
Magn Reson Med ; 86(3): 1434-1444, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33759208

RESUMO

PURPOSE: Designing a new T2 -preparation (T2 -Prep) module to simultaneously provide robust fat suppression and efficient T2 preparation without requiring an additional fat-suppression module for T2 -weighted imaging at 3T. METHODS: The tip-down radiofrequency (RF) pulse of an adiabatic T2 -Prep module was replaced by a custom-designed RF-excitation pulse that induces a phase difference between water and fat, resulting in a simultaneous T2 preparation of water signals and the suppression of fat signals at the end of the module (a phaser adiabatic T2 -Prep). Numerical simulations and in vitro and in vivo electrocardiogram (ECG)-triggered navigator-gated acquisitions of the human heart were performed. Blood, myocardium, and fat signal-to-noise ratios and right coronary artery vessel sharpness were compared against previously published adiabatic T2 -Prep approaches. RESULTS: Numerical simulations predicted an increased fat-suppression bandwidth and decreased sensitivity to transmit magnetic field inhomogeneities using the proposed approach while preserving the water T2 -Prep capabilities. This was confirmed by the tissue signals acquired in the phantom and the in vivo images, which show similar blood and myocardium signal-to-noise ratio, contrast-to-noise ratio, and significantly reduced fat signal-to-noise ratio compared with the other methods. As a result, the right coronary artery conspicuity was significantly increased. CONCLUSION: A novel fat-suppressing T2 -Prep method was developed and implemented that showed robust fat suppression and increased vessel sharpness compared with conventional techniques while preserving its T2 -Prep capabilities.


Assuntos
Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Vasos Coronários , Coração/diagnóstico por imagem , Humanos , Imagens de Fantasmas
17.
Magn Reson Med ; 86(1): 213-229, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33624348

RESUMO

PURPOSE: Whole-heart MRA techniques typically target predetermined motion states, address cardiac and respiratory dynamics independently, and require either complex planning or computationally demanding reconstructions. In contrast, we developed a fast data-driven reconstruction algorithm with minimal physiological assumptions and compatibility with ungated free-running sequences. THEORY AND METHODS: We propose a similarity-driven multi-dimensional binning algorithm (SIMBA) that clusters continuously acquired k-space data to find a motion-consistent subset for whole-heart MRA reconstruction. Free-running 3D radial data sets from 12 non-contrast-enhanced scans of healthy volunteers and six ferumoxytol-enhanced scans of pediatric cardiac patients were reconstructed with non-motion-suppressed regridding of all the acquired data ("All Data"), with SIMBA, and with a previously published free-running framework (FRF) that uses cardiac and respiratory self-gating and compressed sensing. Images were compared for blood-myocardium sharpness and contrast ratio, visibility of coronary artery ostia, and right coronary artery sharpness. RESULTS: Both the 20-second SIMBA reconstruction and FRF provided significantly higher blood-myocardium sharpness than All Data in both patients and volunteers (P < .05). The SIMBA reconstruction provided significantly sharper blood-myocardium interfaces than FRF in volunteers (P < .001) and higher blood-myocardium contrast ratio than All Data and FRF, both in volunteers and patients (P < .05). Significantly more ostia could be visualized with both SIMBA (31 of 36) and FRF (34 of 36) than with All Data (4 of 36) (P < .001). Inferior right coronary artery sharpness using SIMBA versus FRF was observed (volunteers: SIMBA 36.1 ± 8.1%, FRF 40.4 ± 8.9%; patients: SIMBA 35.9 ± 7.7%, FRF 40.3 ± 6.1%, P = not significant). CONCLUSION: The SIMBA technique enabled a fast, data-driven reconstruction of free-running whole-heart MRA with image quality superior to All Data and similar to the more time-consuming FRF reconstruction.


Assuntos
Imageamento Tridimensional , Angiografia por Ressonância Magnética , Algoritmos , Criança , Vasos Coronários/diagnóstico por imagem , Humanos , Movimento (Física)
18.
Prog Neurobiol ; 194: 101885, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32653462

RESUMO

Eye motion is a major confound for magnetic resonance imaging (MRI) in neuroscience or ophthalmology. Currently, solutions toward eye stabilisation include participants fixating or administration of paralytics/anaesthetics. We developed a novel MRI protocol for acquiring 3-dimensional images while the eye freely moves. Eye motion serves as the basis for image reconstruction, rather than an impediment. We fully reconstruct videos of the moving eye and head. We quantitatively validate data quality with millimetre resolution in two ways for individual participants. First, eye position based on reconstructed images correlated with simultaneous eye-tracking. Second, the reconstructed images preserve anatomical properties; the eye's axial length measured from MRI images matched that obtained with ocular biometry. The technique operates on a standard clinical setup, without necessitating specialized hardware, facilitating wide deployment. In clinical practice, we anticipate that this may help reduce burdens on both patients and infrastructure, by integrating multiple varieties of assessments into a single comprehensive session. More generally, our protocol is a harbinger for removing the necessity of fixation, thereby opening new opportunities for ethologically-valid, naturalistic paradigms, the inclusion of populations typically unable to stably fixate, and increased translational research such as in awake animals whose eye movements constitute an accessible behavioural readout.


Assuntos
Movimentos Oculares/fisiologia , Tecnologia de Rastreamento Ocular , Neuroimagem Funcional/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Tecnologia de Rastreamento Ocular/instrumentação , Tecnologia de Rastreamento Ocular/normas , Estudos de Viabilidade , Feminino , Neuroimagem Funcional/normas , Humanos , Imageamento Tridimensional/normas , Imageamento por Ressonância Magnética/normas , Masculino , Reprodutibilidade dos Testes
19.
Magn Reson Med ; 84(3): 1470-1485, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32144824

RESUMO

PURPOSE: To implement, optimize, and characterize lipid-insensitive binomial off-resonant RF excitation (LIBRE) pulses for fat-suppressed fully self-gated free-running 5D cardiac MRI. METHODS: Bloch equation simulations were used to optimize LIBRE parameter settings in non-interrupted bSSFP prior to in vitro validation. Thus, optimized LIBRE pulses were subsequently applied to free-running coronary MRA in 20 human adult subjects, where resulting images were quantitatively compared to those obtained with non-fat-suppressing excitation (SP), conventional 1-2-1 water excitation (WE), and a previously published interrupted free-running (IFR) sequence. SAR and scan times were recorded. Respiratory-and-cardiac-motion-resolved images were reconstructed with XD-GRASP, and contrast ratios, coronary artery detection rate, vessel length, and vessel sharpness were computed. RESULTS: The numerically optimized LIBRE parameters were successfully validated in vitro. In vivo, LIBRE had the lowest SAR and a scan time that was similar to that of WE yet 18% shorter than that of IFR. LIBRE improved blood-fat contrast when compared to SP, WE, and IFR, vessel detection relative to SP and IFR, and vessel sharpness when compared to WE and IFR (for example, for the left main and anterior descending coronary artery, 51.5% ± 10.2% [LIBRE] versus 42.1% ± 6.8% [IFR]). Vessel length measurements remained unchanged for all investigated methods. CONCLUSION: LIBRE enabled fully self-gated non-interrupted free-running 5D bSSFP imaging of the heart at 1.5T with suppressed fat signal. Measures of image quality, vessel conspicuity, and scan time compared favorably to those obtained with the more conventional non-interrupted WE and the previously published IFR, while SAR reduction offers added flexibility.


Assuntos
Coração , Água , Adulto , Angiografia Coronária , Vasos Coronários/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Lipídeos , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética
20.
NMR Biomed ; 33(3): e4243, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31904900

RESUMO

Under normal conditions, the heart mainly relies on fatty acid oxidation to meet its energy needs. Changes in myocardial fuel preference are noted in the diseased and failing heart. The magnetic resonance signal enhancement provided by spin hyperpolarization allows the metabolism of substrates labeled with carbon-13 to be followed in real time in vivo. Although the low water solubility of long-chain fatty acids abrogates their hyperpolarization by dissolution dynamic nuclear polarization, medium-chain fatty acids have sufficient solubility to be efficiently polarized and dissolved. In this study, we investigated the applicability of hyperpolarized [1-13 C]octanoate to measure myocardial medium-chain fatty acid metabolism in vivo. Scanning rats infused with a bolus of hyperpolarized [1-13 C]octanoate, the primary metabolite observed in the heart was identified as [1-13 C]acetylcarnitine. Additionally, [5-13 C]glutamate and [5-13 C]citrate could be respectively resolved in seven and five of 31 experiments, demonstrating the incorporation of oxidation products of octanoate into the tricarboxylic acid cycle. A variable drop in blood pressure was observed immediately following the bolus injection, and this drop correlated with a decrease in normalized acetylcarnitine signal (acetylcarnitine/octanoate). Increasing the delay before infusion moderated the decrease in blood pressure, which was attributed to the presence of residual gas bubbles in the octanoate solution. No significant difference in normalized acetylcarnitine signal was apparent between fed and 12-hour fasted rats. Compared with a solution in buffer, the longitudinal relaxation of [1-13 C]octanoate was accelerated ~3-fold in blood and by the addition of serum albumin. These results demonstrate the potential of hyperpolarized [1-13 C]octanoate to probe myocardial medium-chain fatty acid metabolism as well as some of the limitations that may accompany its use.


Assuntos
Caprilatos/metabolismo , Isótopos de Carbono/metabolismo , Ciclo do Ácido Cítrico , Imageamento por Ressonância Magnética , Miocárdio/metabolismo , Animais , Artérias/metabolismo , Glicemia/metabolismo , Ácido Láctico/sangue , Masculino , Redes e Vias Metabólicas , Metaboloma , Oxirredução , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA