Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301713, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564783

RESUMO

The label-free imaging of inorganic nanoparticles (NPs) using confocal laser scanning microscopy (CLSM) provides a powerful and versatile tool for studying interactions between NPs and biological systems. Without the need for exogenous labels or markers, it simply benefits from the differential scattering of visible photons between biomaterials and inorganic NPs. Validation experiments conducted on fixed and living cells in real-time, as well as mouse tissue sections following parenteral administration of NPs. Additionally, by incorporating reporter fluorophores and utilizing both reflectance and fluorescence imaging modalities, the method enables high-resolution multiplex imaging of cellular structures and NPs. Different sizes and concentrations of Au NPs are tested as for Ag, Fe3O4, and CeO2 NPs, all with biological interest. Overall, the comprehensive study of NP imaging by confocal microscopy in reflectance mode provides valuable insights and tools for researchers interested in monitoring the nano-bio interactions.

2.
Nat Commun ; 14(1): 6165, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789037

RESUMO

Metal clusters supported on TiO2 are widely used in many photocatalytic applications, including pollution control and production of solar fuels. Besides high photoactivity, stability during the photoreaction is another essential quality of high-performance photocatalysts, however systematic studies on this attribute are absent for metal clusters supported on TiO2. Here we have studied, both experimentally and with first-principles simulation methods, the stability of Pt, Pd and Au clusters prepared by ball milling on nanoshaped anatase nanoparticles preferentially exposing {001} (plates) and {101} (bipyramids) facets during the photogeneration of hydrogen. It is found that Pt/TiO2 exhibits superior stability than Pd/TiO2 and Au/TiO2, and that {001} facet-based photocatalysts always are more stable than their {101} analogous regardless of the considered metal species. The loss of stability associated with cluster sintering, which is facilitated by the transfer of photoexcited carriers from the metal species to the neighbouring Ti and O atoms, most significantly and detrimentally affects the H2-evolution photoactivity.

3.
Nanomaterials (Basel) ; 13(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764620

RESUMO

Using surfactants in the galvanic replacement reaction (GRR) offers a versatile approach to modulating hollow metal nanocrystal (NC) morphology and composition. Among the various surfactants available, quaternary ammonium cationic surfactants are commonly utilised. However, understanding how they precisely influence morphological features, such as the size and void distribution, is still limited. In this study, we aim to uncover how adding different surfactants-CTAB, CTAC, CTApTS, and PVP-can fine-tune the morphological characteristics of AuAg hollow NCs synthesised via GRR at room temperature. Our findings reveal that the halide counterion in the surfactant significantly controls void formation within the hollow structure. When halogenated surfactants, such as CTAB or CTAC, are employed, multichambered opened nanoboxes are formed. In contrast, with non-halogenated CTApTS, single-walled closed nanoboxes with irregularly thick walls form. Furthermore, when PVP, a polymer surfactant, is utilised, changes in concentration lead to the production of well-defined single-walled closed nanoboxes. These observations highlight the role of surfactants in tailoring the morphology of hollow NCs synthesised through GRR.

4.
Int J Mol Sci ; 24(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37762274

RESUMO

Endotoxins or lipopolysaccharides (LPS), found in the outer membrane of Gram-negative bacterial cell walls, can stimulate the human innate immune system, leading to life-threatening symptoms. Therefore, regulatory limits for endotoxin content apply to injectable pharmaceuticals, and excess LPS must be removed before commercialization. The majority of available endotoxin removal systems are based on the non-specific adsorption of LPS to charged and/or hydrophobic surfaces. Albeit effective to remove endotoxins, the lack of specificity can result in the unwanted loss of essential proteins from the pharmaceutical formulation. In this work, we developed microparticles conjugated to anti-Lipid A antibodies for selective endotoxin removal. Anti-Lipid A particles were characterized using flow cytometry and microscopy techniques. These particles exhibited a depletion capacity > 6 ×103 endotoxin units/mg particles from water, as determined with two independent methods (Limulus Amebocyte Lysate test and nanoparticle tracking analysis). Additionally, we compared these particles with a non-specific endotoxin removal system in a series of formulations of increasing complexity: bovine serum albumin in water < insulin in buffer < birch pollen extracts. We demonstrated that the specific anti-Lipid A particles show a higher protein recovery without compromising their endotoxin removal capacity. Consequently, we believe that the specificity layer integrated by the anti-Lipid A antibody could be advantageous to enhance product yield.


Assuntos
Endotoxinas , Lipopolissacarídeos , Humanos , Endotoxinas/química , Lipopolissacarídeos/química , Composição de Medicamentos , Proteínas de Membrana/química , Teste do Limulus/métodos
5.
Nanomaterials (Basel) ; 13(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570527

RESUMO

Cerium oxide nanoparticles (CeO2NPs) have exceptional catalytic properties, rendering them highly effective in removing excessive reactive oxygen species (ROS) from biological environments, which is crucial in safeguarding these environments against radiation-induced damage. Additionally, the Ce atom's high Z number makes it an ideal candidate for utilisation as an X-ray imaging contrast agent. We herein show how the injection of albumin-stabilised 5 nm CeO2NPs into mice revealed substantial enhancement in X-ray contrast, reaching up to a tenfold increase at significantly lower concentrations than commercial or other proposed contrast agents. Remarkably, these NPs exhibited prolonged residence time within the target organs. Thus, upon injection into the tail vein, they exhibited efficient uptake by the liver and spleen, with 85% of the injected dose (%ID) recovered after 7 days. In the case of intratumoral administration, 99% ID of CeO2NPs remained within the tumour throughout the 7-day observation period, allowing for observation of disease dynamics. Mass spectrometry (ICP-MS) elemental analysis confirmed X-ray CT imaging observations.

6.
Front Immunol ; 14: 1128582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228592

RESUMO

Introduction: Gene therapy holds promise to cure various diseases at the fundamental level. For that, efficient carriers are needed for successful gene delivery. Synthetic 'non-viral' vectors, as cationic polymers, are quickly gaining popularity as efficient vectors for transmitting genes. However, they suffer from high toxicity associated with the permeation and poration of the cell membrane. This toxic aspect can be eliminated by nanoconjugation. Still, results suggest that optimising the oligonucleotide complexation, ultimately determined by the size and charge of the nanovector, is not the only barrier to efficient gene delivery. Methods: We herein develop a comprehensive nanovector catalogue comprising different sizes of Au NPs functionalized with two different cationic molecules and further loaded with mRNA for its delivery inside the cell. Results and Discussion: Tested nanovectors showed safe and sustained transfection efficiencies over 7 days, where 50 nm Au NPs displayed the highest transfection rates. Remarkably, protein expression was increased when nanovector transfection was performed combined with chloroquine. Cytotoxicity and risk assessment demonstrated that nanovectors are safe, ascribed to lesser cellular damage due to their internalization and delivery via endocytosis. Obtained results may pave the way to design advanced and efficient gene therapies for safely transferring oligonucleotides.


Assuntos
Ouro , Nanopartículas Metálicas , RNA Mensageiro , Transfecção , Endocitose
7.
Nanomaterials (Basel) ; 13(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049267

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are one of the main sources of the nanoparticulate matter exposure to humans. Although several studies have demonstrated their potential toxic effects, the real nature of the correlation between NP properties and their interaction with biological targets is still far from being fully elucidated. Here, engineered TiO2 NPs with various geometries (bipyramids, plates, and rods) have been prepared, characterized and intravenously administered in healthy mice. Parameters such as biodistribution, accumulation, and toxicity have been assessed in the lungs and liver. Our data show that the organ accumulation of TiO2 NPs, measured by ICP-MS, is quite low, and this is only partially and transiently affected by the NP geometries. The long-lasting permanence is exclusively restricted to the lungs. Here, bipyramids and plates show a higher accumulation, and interestingly, rod-shaped NPs are the most toxic, leading to histopathological pulmonary alterations. In addition, they are also able to induce a transient increase in serum markers related to hepatocellular injury. These results indicate that rods, more than bipyramidal and spherical geometries, lead to a stronger and more severe biological effect. Overall, small physico-chemical differences can dramatically modify both accumulation and safety.

8.
Nanomaterials (Basel) ; 13(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985887

RESUMO

Morphological control at the nanoscale paves the way to fabricate nanostructures with desired plasmonic properties. In this study, we discuss the nanoengineering of plasmon resonances in 1D hollow nanostructures of two different AuAg nanotubes, including completely hollow nanotubes and hybrid nanotubes with solid Ag and hollow AuAg segments. Spatially resolved plasmon mapping by electron energy loss spectroscopy (EELS) revealed the presence of high order resonator-like modes and localized surface plasmon resonance (LSPR) modes in both nanotubes. The experimental findings accurately correlated with the boundary element method (BEM) simulations. Both experiments and simulations revealed that the plasmon resonances are intensely present inside the nanotubes due to plasmon hybridization. Based on the experimental and simulated results, we show that the novel hybrid AuAg nanotubes possess two significant coexisting features: (i) LSPRs are distinctively generated from the hollow and solid parts of the hybrid AuAg nanotube, which creates a way to control a broad range of plasmon resonances with one single nanostructure, and (ii) the periodicity of the high-order modes are disrupted due to the plasmon hybridization by the interaction of solid and hollow parts, resulting in an asymmetrical plasmon distribution in 1D nanostructures. The asymmetry could be modulated/engineered to control the coded plasmonic nanotubes.

9.
Antioxidants (Basel) ; 12(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979013

RESUMO

Nanoparticle (NP) pharmacokinetics significantly differ from traditional small molecule principles. From this emerges the need to create new tools and concepts to harness their full potential and avoid unnecessary risks. Nanoparticle pharmacokinetics strongly depend on size, shape, surface functionalisation, and aggregation state, influencing their biodistribution, accumulation, transformations, and excretion profile, and hence their efficacy and safety. Today, while NP biodistribution and nanoceria biodistribution have been studied often at short times, their long-term accumulation and excretion have rarely been studied. In this work, 3 nm nanoceria at 5.7 mg/kg of body weight was intravenously administrated in a single dose to healthy mice. Biodistribution was measured in the liver, spleen, kidney, lung, brain, lymph nodes, ovary, bone marrow, urine, and faeces at different time points (1, 9, 30, and 100 days). Biodistribution and urinary and faecal excretion were also studied in rats placed in metabolic cages at shorter times. The similarity of results of different NPs in different models is shown as the heterogeneous nanoceria distribution in organs. After the expectable accumulation in the liver and spleen, the concentration of cerium decays exponentially, accounting for about a 50% excretion of cerium from the body in 100 days. Cerium ions, coming from NP dissolution, are most likely excreted via the urinary tract, and ceria nanoparticles accumulated in the liver are most likely excreted via the hepatobiliary route. In addition, nanoceria looks safe and does not damage the target organs. No weight loss or apathy was observed during the course of the experiments.

10.
Front Immunol ; 14: 1129296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923400

RESUMO

The long quest for efficient drug administration has been looking for a universal carrier that can precisely transport traditional drugs, new genomic and proteic therapeutic agents. Today, researchers have found conditions to overcome the two main drug delivery dilemmas. On the one side, the versatility of the vehicle to efficiently load, protect and transport the drug and then release it at the target place. On the other hand, the questions related to the degree of PEGylation which are needed to avoid nanoparticle (NP) aggregation and opsonization while preventing cellular uptake. The development of different kinds of lipidic drug delivery vehicles and particles has resulted in the development of ionizable lipid nanoparticles (iLNPs), which can overcome most of the typical drug delivery problems. Proof of their success is the late approval and massive administration as the prophylactic vaccine for SARS-CoV-2. These ILNPs are built by electrostatic aggregation of surfactants, the therapeutic agent, and lipids that self-segregate from an aqueous solution, forming nanoparticles stabilized with lipid polymers, such as PEG. These vehicles overcome previous limitations such as low loading and high toxicity, likely thanks to low charge at the working pH and reduced size, and their entry into the cells via endocytosis rather than membrane perforation or fusion, always associated with higher toxicity. We herein revise their primary features, synthetic methods to prepare and characterize them, pharmacokinetic (administration, distribution, metabolization and excretion) aspects, and biodistribution and fate. Owing to their advantages, iLNPs are potential drug delivery systems to improve the management of various diseases and widely available for clinical use.


Assuntos
COVID-19 , Nanopartículas , Surfactantes Pulmonares , Humanos , Tensoativos/química , RNA , Distribuição Tecidual , Vacinas contra COVID-19 , Lipídeos/química , SARS-CoV-2 , Nanopartículas/química , Lipoproteínas
11.
Nanoscale ; 14(38): 14223-14230, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36125109

RESUMO

This manuscript proves the reproducibility and robustness of cerium oxide nanoparticles, nanoceria, employed as a chemical reagent with oxidizing capacity (as an electron sink) at acidic pH. Unlike nanoceria multi-enzyme-mimetic capabilities at neutral or high pH, nanoceria can behave as a stoichiometric reagent at low pH where insoluble Ce4+ ions transform into soluble Ce3+ in the nanocrystal that finally dissolves. This behaviour can be interpreted as enzyme-like when nanoceria is in excess with respect to the substrate. Under these conditions, the Ce3+/Ce4+ ratio in the NPs can easily be estimated by titration with ferrocyanide. This procedure could become a rapid assessment tool for evaluating nanoceria capacity in liquid environments.

12.
Sci Rep ; 12(1): 13926, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977997

RESUMO

Nanoparticles (NPs) show promising applications in biomedicine, catalysis, and energy harvesting. This applicability relies on controlling the material's features at the nanometer scale. Surfactants, a unique class of surface-active molecules, have a remarkable ability to tune NPs activity; provide specific functions, avoid their aggregation, and create stable colloidal solutions. Surfactants also control nanoparticles' nucleation and growth processes by modifying nuclei solubility and surface energy. While nucleation seems independent from the surfactant, NP's growth depends on it. NP`s size is influenced by the type of functional group (C, O, S or N), length of its C chain and NP to surfactant ratio. In this paper, gold nanoparticles (Au NPs) are taken as model systems to study how nucleation and growth processes are affected by the choice of surfactants by Dissipative Particle Dynamics (DPD) simulations. DPD has been mainly used for studying biochemical structures, like lipid bilayer models. However, the study of solid NPs, and their conjugates, needs the introduction of a new metallic component. To represent the collective phenomena of these large systems, their degrees of freedom are reduced by Coarse-Grained (CG) models. DPD behaved as a powerful tool for studying complex systems and shedding some light on some experimental observations, otherwise difficult to explain.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Surfactantes Pulmonares , Ouro/química , Bicamadas Lipídicas , Nanopartículas Metálicas/química , Nanopartículas/química , Tensoativos/química
13.
Nanoscale ; 14(33): 12048-12059, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35946341

RESUMO

The present study investigates basic features of a photoelectrochemical system based on CeO2 nanoparticles fixed on gold electrodes. Since photocurrent generation is limited to the absorption range of the CeO2 in the UV range, the combination with metal nanoparticles has been studied. It can be shown that the combination of silver nanoparticles with the CeO2 can shift the excitation range into the visible light wavelength range. Here a close contact between both components has been found to be essential and thus, hybrid CeO2@Ag nanoparticles have been prepared and analyzed. We have collected arguments that electron transfer occurs between both compositional elements of the hybrid nanoparticles.The photocurrent generation can be rationalized on the basis of an energy diagram underlying the necessity of surface plasmon excitation in the metal nanoparticles, which is also supported by wavelength-dependent photocurrent measurements. However, electrochemical reactions seem to occur at the CeO2 surface and consequently, the catalytic properties of this material can be exploited as exemplified with the photoelectrochemical reduction of hydrogen peroxide. It can be further demonstrated that the layer-by layer technique can be exploited to create a multilayer system on top of a gold electrode which allows the adjustment of the sensitivity of the photoelectrochemical system. Thus, with a 5-layer electrode with hybrid CeO2@Ag nanoparticles submicromolar hydrogen peroxide concentrations can be detected.

14.
Bioconjug Chem ; 33(8): 1505-1514, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35852911

RESUMO

Sodium citrate-stabilized gold nanoparticles (AuNPs) are destabilized when dispersed in cell culture media (CCMs). This may promote their aggregation and subsequent sedimentation, or under the proper conditions, their interaction with dispersed proteins can lead to the formation of a NP-stabilizing protein corona. CCMs are ionic solutions that contain growth substances which are typically supplemented, in addition to serum, with different substances such as dyes, antioxidants, and antibiotics. In this study, the impact of phenol red, penicillin-streptomycin, l-glutamine, and ß-mercaptoethanol on the formation of the NP-protein corona in CCMs was investigated. Similar protein coronas were obtained except in the presence of antibiotics. Under these conditions, the protein corona took more time to be formed, and its density and composition were altered, as indicated by UV-vis spectroscopy, Z potential, dynamic light scattering, and liquid chromatography-mass spectrometry analyses. As a consequence of these modifications, a significantly different AuNP cellular uptake was measured, showing that NP uptake increased as did the NP aggregate formation. AuNP uptake studies performed in the presence of clathrin- and caveolin-mediated endocytosis inhibitors showed that neither clathrin receptors nor lipid rafts were significantly involved in the internalization mechanism. These results suggest that in these conditions, NP aggregation is the main mechanism responsible for their cellular uptake.


Assuntos
Nanopartículas Metálicas , Coroa de Proteína , Antibacterianos , Técnicas de Cultura de Células , Citratos/química , Ácido Cítrico , Clatrina , Ouro/química , Nanopartículas Metálicas/química , Coroa de Proteína/metabolismo
15.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628574

RESUMO

The widespread and increasing use of engineered nanomaterials (ENM) increases the risk of human exposure, generating concern that ENM may provoke adverse health effects. In this respect, their physicochemical characteristics are critical. The immune system may respond to ENM through inflammatory reactions. The NLRP3 inflammasome responds to a wide range of ENM, and its activation is associated with various inflammatory diseases. Recently, anisotropic ENM have become of increasing interest, but knowledge of their effects on the immune system is still limited. The objective of the study was to compare the effects of gold ENM of different shapes on NLRP3 inflammasome activation and related signalling pathways. Differentiated THP-1 cells (wildtype, ASC- or NLRP3-deficient), were exposed to PEGylated gold nanorods, nanostars, and nanospheres, and, thus, also different surface chemistries, to assess NLRP3 inflammasome activation. Next, the exposed cells were subjected to gene expression analysis. Nanorods, but not nanostars or nanospheres, showed NLRP3 inflammasome activation. ASC- or NLRP3-deficient cells did not show this effect. Gene Set Enrichment Analysis revealed that gold nanorod-induced NLRP3 inflammasome activation was accompanied by downregulated sterol/cholesterol biosynthesis, oxidative phosphorylation, and purinergic receptor signalling. At the level of individual genes, downregulation of Paraoxonase-2, a protein that controls oxidative stress, was most notable. In conclusion, the shape and surface chemistry of gold nanoparticles determine NLRP3 inflammasome activation. Future studies should include particle uptake and intracellular localization.


Assuntos
Ouro , Nanopartículas Metálicas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nanotubos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
16.
Nanomaterials (Basel) ; 12(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35159859

RESUMO

Data suitable for assembling a physiologically-based pharmacokinetic (PBPK) model for nanoparticles (NPs) remain relatively scarce. Therefore, there is a trend in extrapolating the results of in vitro and in silico studies to in vivo nanoparticle hazard and risk assessment. To evaluate the reliability of such approach, a pharmacokinetic study was performed using the same polyethylene glycol-coated gold nanoparticles (PEG-AuNPs) in vitro and in vivo. As in vitro models, human cell lines TH1, A549, Hep G2, and 16HBE were employed. The in vivo PEG-AuNP biodistribution was assessed in rats. The internalization and exclusion of PEG-AuNPs in vitro were modeled as first-order rate processes with the partition coefficient describing the equilibrium distribution. The pharmacokinetic parameters were obtained by fitting the model to the in vitro data and subsequently used for PBPK simulation in vivo. Notable differences were observed in the internalized amount of Au in individual cell lines compared to the corresponding tissues in vivo, with the highest found for renal TH1 cells and kidneys. The main reason for these discrepancies is the absence of natural barriers in the in vitro conditions. Therefore, caution should be exercised when extrapolating in vitro data to predict the in vivo NP burden and response to exposure.

17.
Sci Total Environ ; 768: 144792, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33736322

RESUMO

Studying the behaviour of nanomaterials after their release into natural water is essential to understand the risk associated to their environmental exposure. In particular, the interaction and adsorption of dissolved organic matter onto nanoparticles strongly influence the behaviour and fate of nanomaterials in natural water systems. We herein study the interaction of Au and Ag nanoparticles and humic acids, the principal component of natural dissolved organic matter. Physicochemical characterization results showed the formation of an organic matter corona, consisting of two layers: a "hard" one, firmly bound to the nanoparticle surface, and a "soft" one, in dynamic equilibrium and, consequently, highly dependent on the media organic matter concentration. The extent of the electro-steric stabilization of the so called environmental corona depends on the size of the supramolecular association of humic acid (which depends on its hydrophilic and lipophilic moieties), the nanoparticle size, the total concentration of organic matter in the media, and the ratio between them. Interestingly, environmental coronas can eventually prevent Ca2+ and Mg2+ induced aggregation at concentrations range present in most of the freshwater bodies. The humic coating formed on top of the Au or control Ag nanoparticles presented a similar profile, but the corrodibility of Ag led to a more natural detachment of the corona. These results were further confirmed by exposing the nanoparticles to a model of natural water and standard mud (LUFA 2.2 dispersion). In the latter case, after several days, nanoparticle sedimentation was observed, which was attributed to interactions with macro organic and inorganic matter (fraction larger than particulate matter).

18.
Small ; 17(15): e2006012, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33458959

RESUMO

Microfluidic technology is a valuable tool for realizing more in vitro models capturing cellular and organ level responses for rapid and animal-free risk assessment of new chemicals and drugs. Microfluidic cell-based devices allow high-throughput screening and flexible automation while lowering costs and reagent consumption due to their miniaturization. There is a growing need for faster and animal-free approaches for drug development and safety assessment of chemicals (Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH). The work presented describes a microfluidic platform for in vivo-like in vitro cell cultivation. It is equipped with a wafer-based silicon chip including integrated electrodes and a microcavity. A proof-of-concept using different relevant cell models shows its suitability for label-free assessment of cytotoxic effects. A miniaturized microscope within each module monitors cell morphology and proliferation. Electrodes integrated in the microfluidic channels allow the noninvasive monitoring of barrier integrity followed by a label-free assessment of cytotoxic effects. Each microfluidic cell cultivation module can be operated individually or be interconnected in a flexible way. The interconnection of the different modules aims at simulation of the whole-body exposure and response and can contribute to the replacement of animal testing in risk assessment studies in compliance with the 3Rs to replace, reduce, and refine animal experiments.


Assuntos
Técnicas Analíticas Microfluídicas , Preparações Farmacêuticas , Animais , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Dispositivos Lab-On-A-Chip , Microfluídica
19.
J Hazard Mater ; 402: 123793, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33254802

RESUMO

We report that the immunogenicity of colloidal gold nanoparticles coated with polyvinylpyrrolidone (PVP-AuNPs) in a model organism, the sea urchin Paracentrotus lividus, can function as a proxy for humans for in vitro immunological studies. To profile the immune recognition and interaction from exposure to PVP-AuNPs (1 and 10 µg mL-1), we applied an extensive nano-scale approach, including particle physicochemical characterisation involving immunology, cellular biology, and metabolomics. The interaction between PVP-AuNPs and soluble proteins of the sea urchin physiological coelomic fluid (blood equivalent) results in the formation of a protein "corona" surrounding the NPs from three major proteins that influence the hydrodynamic size and colloidal stability of the particle. At the lower concentration of PVP-AuNPs, the P. lividus phagocytes show a broad metabolic plasticity based on the biosynthesis of metabolites mediating inflammation and phagocytosis. At the higher concentration of PVP-AuNPs, phagocytes activate an immunological response involving Toll-like receptor 4 (TLR4) signalling pathway at 24 hours of exposure. These results emphasise that exposure to PVP-AuNPs drives inflammatory signalling by the phagocytes and the resolution at both the low and high concentrations of the PVP-AuNPs and provides more details regarding the immunogenicity of these NPs.


Assuntos
Nanopartículas Metálicas , Paracentrotus , Animais , Ouro , Humanos , Nanopartículas Metálicas/toxicidade , Fagócitos , Povidona
20.
Small ; 16(21): e2000598, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32363795

RESUMO

The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified.


Assuntos
Imunidade Inata , Nanoestruturas , Medição de Risco , Imunidade Adaptativa , Animais , Imunidade Inata/efeitos dos fármacos , Nanoestruturas/toxicidade , Medição de Risco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA