Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 260(Pt 2): 129470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237817

RESUMO

Polydimethylsiloxane (PDMS), even though widely used in microfluidic applications, its hydrophobic nature restricts its utility in some cases. To address this, PDMS may be used in conjunction with a hydrophilic material. Herein, the PDMS surface is modified by plasma treatment followed by cross-linking with the cataractous eye protein isolate (CEPI). CEPI-PDMS composites are prepared at three pH and the effects of CEPI on the chemical, physical, and electrical properties of PDMS are extensively investigated. The cross-linking between PDMS and the protein are confirmed by FTIR, and the contact angle measurements indicate the improved hydrophilic nature of the composite films as compared to PDMS. Atomic Force Microscopy results demonstrate that the surface roughness is enhanced by the incorporation of the protein and is a function of the pH. The effective elastic modulus of the composites is improved by the incorporation of protein into the PDMS matrix. Measurements of the dielectric properties of these composites indicate that they behave as capacitors at lower frequency range while demonstrating resistive characteristics at higher frequency. These composites provide preliminary ideas in developing flexible devices for potential applications in diverse areas such as energy storage materials, and thermo-elective wireless switching devices.


Assuntos
Dimetilpolisiloxanos , Microfluídica , Propriedades de Superfície , Dimetilpolisiloxanos/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas do Olho
2.
Prog Mol Biol Transl Sci ; 186(1): 109-158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35033281

RESUMO

The microfluidic industry has evolved through years with acquired scientific knowledge from different, and already developed industries. Consequently, a wide range of materials like silicon from the electronic industry to all the way, silicone, from the chemical engineering industry, has been spotted to solve similar challenges. Although a typical microfluidic chip, fabricated from glass or polymer substrates offers definite benefits, however, paper-based microfluidic analytical devices (µPADs) possess numerous special benefits for practical implementation at a lower price. Owing to these features, in recent years, paper microfluidics has drawn immense interest from researchers in industry and academia alike. These devices have wider applications with advantages like lower cost, speedy detection, user-easiness, biocompatibility, sensitivity, and specificity etc. when compared to other microfluidic devices. Therefore, these sensitive but affordable devices fit themselves into point-of-care (POC) testing with features in demand like natural disposability, situational flexibility, and the capability to store and analyze the target at the point of requirement. Gradually, advancements in fabrication technologies, assay development techniques, and improved packaging capabilities, have contributed significantly to the real-time identification and health investigation through paper microfluidics; however, the growth has not been limited to the biomedical field; industries like electronics, energy storage and many more have expanded substantially. Here, we represent an overall state of the paper-based microfluidic technology by covering the fundamentals, working principles, different fabrication procedures, applications for various needs and then to make things more practical, the real-life scenario and practical challenges involved in launching a device into the market have been revealed. To conclude, recent contribution of µPADs in the 2020 pandemic and potential future possibilities have been reviewed.


Assuntos
Microfluídica , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Dispositivos Lab-On-A-Chip , Papel
3.
ACS Omega ; 4(7): 12470-12479, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460366

RESUMO

Engineering of water-dispersible Gd3+ ions-decorated reduced graphene oxide (Gd-rGO) nanosheets (NSs) has been performed. The multifunctional capability of the sample was studied as a novel contrast agent for swept source optical coherence tomography and magnetic resonance imaging, and also as an efficient drug-delivery nanovehicle. The synthesized samples were fabricated in a chemically stable condition, and efforts have been put toward improving its biocompatibility by functionalizing with carbohydrates molecules. Gd incorporation in rGO matrix enhanced the fluorouracil (5-FU) drug loading capacity by 34%. The release of the drug was ∼92% within 72 h. Gd-rGO nanosheets showed significant contrast in comparison to optically responsive bare GO for swept source optical coherence tomography. The longitudinal relaxivity rate (r 1) of 16.85 mM-1 s-1 for Gd-rGO was recorded, which was 4 times larger than that of the commercially used clinical contrast agent Magnevist (4 mM-1 s-1) at a magnetic field strength of 1.5 T.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA