Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Lab Med ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656327

RESUMO

BACKGROUND: Many fentanyl immunoassays are limited in their ability to detect norfentanyl. Urine specimens collected from individuals who have been exposed to fentanyl frequently have detectable concentrations of norfentanyl (≥2 ng/mL) but low concentrations of fentanyl (<2 ng/mL) by LC-MS/MS. The Lin-Zhi Fentanyl II Immunoassay (Lin-Zhi) claims 100% cross-reactivity with norfentanyl and therefore may detect exposure missed by other assays. METHODS: In addition to verifying the manufacturer's analytical sensitivity claims, we selected 92 urine specimens with low-positive Lin-Zhi results (1-99 absorbance units, lowest 10%) for analysis by the Immunalysis Health Equity Impact Assessment and ARK II fentanyl methods. The accuracy of the 3 immunoassays was compared to LC-MS/MS as the reference method. RESULTS: Spiking studies using purified fentanyl and norfentanyl and a set of 100 consecutive specimens confirmed the manufacturer's claims of limit of detection for fentanyl (3.8 ng/mL) and norfentanyl (5.0 ng/mL). However, the 92 low-positive patient specimens demonstrated concentrations of norfentanyl and fentanyl below 2.0 ng/mL by LC-MS/MS, with 47 (51%) having only norfentanyl detected. When comparing Lin-Zhi to the Immunalysis and ARK II immunoassays, only 27 (29%) of the 92 specimens were concordant. Fifty-two (57%) of the specimens were positive by LC-MS/MS and Lin-Zhi but false negative by one or both other immunoassays. Seven specimens (8%) were positive by Lin-Zhi but negative by the other immunoassays and had undetectable concentrations (<2 ng/mL) of fentanyl and norfentanyl by LC-MS/MS. CONCLUSIONS: The clinical sensitivity of the Lin-Zhi exceeds the manufacturer's claims, providing results comparable to LC-MS/MS methods.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38415089

RESUMO

The past 10 years have brought paradigm-shifting changes to clinical microbiology. This paper explores the top 10 transformative innovations across the diagnostic spectrum, including not only state of the art technologies but also preanalytic and post-analytic advances. Clinical decision support tools have reshaped testing practices, curbing unnecessary tests. Innovations like broad-range polymerase chain reaction and metagenomic sequencing, whole genome sequencing, multiplex molecular panels, rapid phenotypic susceptibility testing, and matrix-assisted laser desorption ionization time-of-flight mass spectrometry have all expanded our diagnostic armamentarium. Rapid home-based testing has made diagnostic testing more accessible than ever. Enhancements to clinician-laboratory interfaces allow for automated stewardship interventions and education. Laboratory restructuring and consolidation efforts are reshaping the field of microbiology, presenting both opportunities and challenges for the future of clinical microbiology laboratories. Here, we review key innovations of the last decade.

3.
Anal Chem ; 95(30): 11243-11253, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37469028

RESUMO

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) is a powerful analytical technique that provides spatially preserved detection and quantification of analytes in tissue specimens. However, clinical translation still requires improved throughput, precision, and accuracy. To accomplish this, we created "Chemical QuantArray", a gelatin tissue microarray (TMA) mold filled with serial dilutions of isotopically labeled endogenous metabolite standards. The mold is then cryo-sectioned onto a tissue homogenate to produce calibration curves. To improve precision and accuracy, we automatically remove pixels outside of each TMA well and investigated several intensity normalizations, including the utilization of a second stable isotope internal standard (IS). Chemical QuantArray enables the quantification of several endogenous metabolites over a wide dynamic range and significantly improve over current approaches. The technique reduces the space needed on the MALDI slides for calibration standards by approximately 80%. Furthermore, removal of empty pixels and normalization to an internal standard or matrix peak provided precision (<20% RSD) and accuracy (<20% DEV). Finally, we demonstrate the applicability of Chemical QuantArray by quantifying multiple purine metabolites in 14 clinical tumor specimens using a single MALDI slide. Chemical QuantArray improves the analytical characteristics and practical feasibility of MALDI-MSI metabolite quantification in clinical and translational applications.


Assuntos
Diagnóstico por Imagem , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Calibragem , Padrões de Referência
4.
Ann Clin Microbiol Antimicrob ; 21(1): 49, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371203

RESUMO

Cryptococcuria is a rare manifestation of localized cryptococcal disease. We present a case of Cryptococcus neoformans urinary tract infection in an immunocompromised host missed by routine laboratory workup. The patient had negative blood cultures, a negative serum cryptococcal antigen (CrAg), and "non-Candida yeast" growing in urine culture that was initially dismissed as non-pathogenic. The diagnosis was ultimately made by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) from a repeat urine culture after transfer to a tertiary care center. Cryptococcus should be considered in the differential of refractory urinary tract infections growing non-Candida yeast.


Assuntos
Criptococose , Cryptococcus neoformans , Leucemia , Infecções Urinárias , Humanos , Criptococose/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Candida , Infecções Urinárias/diagnóstico , Leucemia/complicações , Leucemia/diagnóstico
5.
Am J Transplant ; 22(12): 3150-3169, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35822346

RESUMO

The last decade has seen an explosion of advanced assays for the diagnosis of infectious diseases, yet evidence-based recommendations to inform their optimal use in the care of transplant recipients are lacking. A consensus conference sponsored by the American Society of Transplantation (AST) was convened on December 7, 2021, to define the utility of novel infectious disease diagnostics in organ transplant recipients. The conference represented a collaborative effort by experts in transplant infectious diseases, diagnostic stewardship, and clinical microbiology from centers across North America to evaluate current uses, unmet needs, and future directions for assays in 5 categories including (1) multiplex molecular assays, (2) rapid antimicrobial resistance detection methods, (3) pathogen-specific T-cell reactivity assays, (4) next-generation sequencing assays, and (5) mass spectrometry-based assays. Participants reviewed and appraised available literature, determined assay advantages and limitations, developed best practice guidance largely based on expert opinion for clinical use, and identified areas of future investigation in the setting of transplantation. In addition, attendees emphasized the need for well-designed studies to generate high-quality evidence needed to guide care, identified regulatory and financial barriers, and discussed the role of regulatory agencies in facilitating research and implementation of these assays. Findings and consensus statements are presented.


Assuntos
Transplante de Órgãos , Transplantes , Humanos , Transplantados , Consenso , Transplante de Órgãos/efeitos adversos , América do Norte
6.
Neuro Oncol ; 24(1): 64-77, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34383057

RESUMO

BACKGROUND: Response to targeted therapy varies between patients for largely unknown reasons. Here, we developed and applied an integrative platform using mass spectrometry imaging (MSI), phosphoproteomics, and multiplexed tissue imaging for mapping drug distribution, target engagement, and adaptive response to gain insights into heterogeneous response to therapy. METHODS: Patient-derived xenograft (PDX) lines of glioblastoma were treated with adavosertib, a Wee1 inhibitor, and tissue drug distribution was measured with MALDI-MSI. Phosphoproteomics was measured in the same tumors to identify biomarkers of drug target engagement and cellular adaptive response. Multiplexed tissue imaging was performed on sister sections to evaluate spatial co-localization of drug and cellular response. The integrated platform was then applied on clinical specimens from glioblastoma patients enrolled in the phase 1 clinical trial. RESULTS: PDX tumors exposed to different doses of adavosertib revealed intra- and inter-tumoral heterogeneity of drug distribution and integration of the heterogeneous drug distribution with phosphoproteomics and multiplexed tissue imaging revealed new markers of molecular response to adavosertib. Analysis of paired clinical specimens from patients enrolled in the phase 1 clinical trial informed the translational potential of the identified biomarkers in studying patient's response to adavosertib. CONCLUSIONS: The multimodal platform identified a signature of drug efficacy and patient-specific adaptive responses applicable to preclinical and clinical drug development. The information generated by the approach may inform mechanisms of success and failure in future early phase clinical trials, providing information for optimizing clinical trial design and guiding future application into clinical practice.


Assuntos
Glioblastoma , Preparações Farmacêuticas , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Humanos
8.
NPJ Breast Cancer ; 7(1): 116, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504095

RESUMO

Optimal resection of breast tumors requires removing cancer with a rim of normal tissue while preserving uninvolved regions of the breast. Surgical and pathological techniques that permit rapid molecular characterization of tissue could facilitate such resections. Mass spectrometry (MS) is increasingly used in the research setting to detect and classify tumors and has the potential to detect cancer at surgical margins. Here, we describe the ex vivo intraoperative clinical application of MS using a liquid micro-junction surface sample probe (LMJ-SSP) to assess breast cancer margins. In a midpoint analysis of a registered clinical trial, surgical specimens from 21 women with treatment naïve invasive breast cancer were prospectively collected and analyzed at the time of surgery with subsequent histopathological determination. Normal and tumor breast specimens from the lumpectomy resected by the surgeon were smeared onto glass slides for rapid analysis. Lipidomic profiles were acquired from these specimens using LMJ-SSP MS in negative ionization mode within the operating suite and post-surgery analysis of the data revealed five candidate ions separating tumor from healthy tissue in this limited dataset. More data is required before considering the ions as candidate markers. Here, we present an application of ambient MS within the operating room to analyze breast cancer tissue and surgical margins. Lessons learned from these initial promising studies are being used to further evaluate the five candidate biomarkers and to further refine and optimize intraoperative MS as a tool for surgical guidance in breast cancer.

9.
Clin Lab Med ; 41(2): 221-246, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34020761

RESUMO

Rapid characterization of tissue disorder using ambient mass spectrometry (MS) techniques, requiring little to no preanalytical preparations of sampled tissues, has been shown using a variety of ion sources and with many disease classes. A brief overview of ambient MS in clinical applications, the state of the art in regulatory affairs, and recommendations to facilitate adoption for use at the bedside are presented. Unique challenges in the validation of untargeted MS methods and additional safety and compliance requirements for deployment within a clinical setting are further discussed. Development of a harmonized validation strategy for ambient MS methods is emphasized.


Assuntos
Espectrometria de Massas
10.
Clin Lab Med ; 41(2): 309-324, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34020766

RESUMO

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is an emerging analytical technique that promises to change tissue-based diagnostics. This article provides a brief introduction to MALDI MSI as well as clinical diagnostic workflows and opportunities to apply this powerful approach. It describes various MALDI MSI applications, from more clinically mature applications such as cancer to emerging applications such as infectious diseases and drug distribution. In addition, it discusses the analytical considerations that need to be considered when bringing these approaches to different diagnostic problems and settings.


Assuntos
Diagnóstico por Imagem , Lasers , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
J Appl Lab Med ; 6(5): 1338-1354, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33822967

RESUMO

The COVID-19 pandemic has made a devastating impact on global health and continues to challenge healthcare infrastructure and delivery. The clinical laboratories were no exception as they are responsible for diagnostic testing that dictates many clinical, infection control, and public health decisions. Information technology and laboratory management tools are critical assets for maintaining and adapting operations in response to crises. When utilized effectively, they promote the integration between the clinical laboratory specialties (e.g., chemistry, hematology, microbiology, and molecular pathology). During the COVID-19 pandemic, our systems and processes were strained due to high testing volumes, demand for rapid turnaround times, supply chain constraints, and constantly evolving testing algorithms and result interpretations as our knowledge of the virus and of diagnostics increased over time. In this report, we describe those challenges and subsequent adaptations made by each clinical laboratory section. We hope these details help to provide potential solutions and approaches for other hospitals facing COVID-19 surges or other future pandemics.


Assuntos
COVID-19 , Serviços de Laboratório Clínico , Humanos , Laboratórios , Pandemias/prevenção & controle , SARS-CoV-2
13.
Mol Biol Cell ; 31(1): 7-17, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31746669

RESUMO

The unfolded protein response (UPR) senses defects in the endoplasmic reticulum (ER) and orchestrates a complex program of adaptive cellular remodeling. Increasing evidence suggests an important relationship between lipid homeostasis and the UPR. Defects in the ER membrane induce the UPR, and the UPR in turn controls the expression of some lipid metabolic genes. Among lipid species, the very-long-chain fatty acids (VLCFAs) are relatively rare and poorly understood. Here, we show that loss of the VLCFA-coenzyme A synthetase Fat1, which is essential for VLCFA utilization, results in ER stress with compensatory UPR induction. Comprehensive lipidomic analyses revealed a dramatic increase in membrane saturation in the fat1Δ mutant, likely accounting for UPR induction. In principle, this increased membrane saturation could reflect adaptive membrane remodeling or an adverse effect of VLCFA dysfunction. We provide evidence supporting the latter, as the fat1Δ mutant showed defects in the function of Ole1, the sole fatty acyl desaturase in yeast. These results indicate that VLCFAs play essential roles in protein quality control and membrane homeostasis and suggest an unexpected requirement for VLCFAs in Ole1 function.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Coenzima A Ligases/metabolismo , Retículo Endoplasmático/fisiologia , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Homeostase , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Membranas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Resposta a Proteínas não Dobradas/genética
14.
Cancer Res ; 80(6): 1258-1267, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31767628

RESUMO

Glioblastoma (GBM) is increasingly recognized as a disease involving dysfunctional cellular metabolism. GBMs are known to be complex heterogeneous systems containing multiple distinct cell populations and are supported by an aberrant network of blood vessels. A better understanding of GBM metabolism, its variation with respect to the tumor microenvironment, and resulting regional changes in chemical composition is required. This may shed light on the observed heterogeneous drug distribution, which cannot be fully described by limited or uneven disruption of the blood-brain barrier. In this work, we used mass spectrometry imaging (MSI) to map metabolites and lipids in patient-derived xenograft models of GBM. A data analysis workflow revealed that distinctive spectral signatures were detected from different regions of the intracranial tumor model. A series of long-chain acylcarnitines were identified and detected with increased intensity at the tumor edge. A 3D MSI dataset demonstrated that these molecules were observed throughout the entire tumor/normal interface and were not confined to a single plane. mRNA sequencing demonstrated that hallmark genes related to fatty acid metabolism were highly expressed in samples with higher acylcarnitine content. These data suggest that cells in the core and the edge of the tumor undergo different fatty acid metabolism, resulting in different chemical environments within the tumor. This may influence drug distribution through changes in tissue drug affinity or transport and constitute an important consideration for therapeutic strategies in the treatment of GBM. SIGNIFICANCE: GBM tumors exhibit a metabolic gradient that should be taken into consideration when designing therapeutic strategies for treatment.See related commentary by Tan and Weljie, p. 1231.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Xenoenxertos , Humanos , Espectrometria de Massas , Microambiente Tumoral
15.
NPJ Precis Oncol ; 3: 17, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31286061

RESUMO

Matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) is an emerging analytical technique, which generates spatially resolved proteomic and metabolomic images from tissue specimens. Conventional MALDI MSI processing and data acquisition can take over 30 min, limiting its clinical utility for intraoperative diagnostics. We present a rapid MALDI MSI method, completed under 5 min, including sample preparation and analysis, providing a workflow compatible with the clinical frozen section procedure.

16.
Anal Chem ; 91(10): 6800-6807, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31025851

RESUMO

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is a powerful technique for spatially resolved metabolomics. A variation on MALDI, termed metal oxide laser ionization (MOLI), capitalizes on the unique property of cerium(IV) oxide (CeO2) to induce laser-catalyzed fatty acyl cleavage from lipids and has been utilized for bacterial identification. In this study, we present the development and utilization of CeO2 as an MSI catalyst. The method was developed using a MALDI TOF instrument in negative ion mode, equipped with a high frequency laser. Instrument parameters for MOLI MS fatty acid catalysis with CeO2 were optimized with phospholipid standards and fatty acid catalysis was confirmed using lipid extracts from reference bacterial strains, and sample preparation was optimized using mouse brain tissue. MOLI MSI was applied to the imaging of normal mouse brain revealing differentiable fatty acyl pools in myelinated and nonmyelinated regions. Similarly, MOLI MSI showed distinct fatty acyl composition in tumor regions of a patient derived xenograft mouse model of glioblastoma. To assess the potential of MOLI MSI to detect pathogens directly from tissue, a pseudoinfection model was prepared by spotting Escherichia coli lipid extracts on mouse brain tissue sections and imaged by MOLI MSI. The spotted regions were molecularly resolved from the supporting mouse brain tissue by the diagnostic odd-chained fatty acids and reflected control bacterial MOLI MS signatures. We describe MOLI MSI for the first time and highlight its potential for spatially resolved fatty acyl analysis, characterization of fatty acyl composition in tumors, and its potential for pathogen detection directly from tissue.


Assuntos
Cério/química , Ácidos Graxos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Bactérias/química , Encéfalo/metabolismo , Feminino , Glioblastoma/química , Humanos , Camundongos Nus
17.
Mol Cancer Res ; 17(5): 1155-1165, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30745465

RESUMO

Diagnosis of prostate cancer is based on histologic evaluation of tumor architecture using a system known as the "Gleason score." This diagnostic paradigm, while the standard of care, is time-consuming, shows intraobserver variability, and provides no information about the altered metabolic pathways, which result in altered tissue architecture. Characterization of the molecular composition of prostate cancer and how it changes with respect to the Gleason score (GS) could enable a more objective and faster diagnosis. It may also aid in our understanding of disease onset and progression. In this work, we present mass spectrometry imaging for identification and mapping of lipids and metabolites in prostate tissue from patients with known prostate cancer with GS from 6 to 9. A gradient of changes in the intensity of various lipids was observed, which correlated with increasing GS. Interestingly, these changes were identified in both regions of high tumor cell density, and in regions of tissue that appeared histologically benign, possibly suggestive of precancerous metabolomic changes. A total of 31 lipids, including several phosphatidylcholines, phosphatidic acids, phosphatidylserines, phosphatidylinositols, and cardiolipins were detected with higher intensity in GS (4+3) compared with GS (3+4), suggesting they may be markers of prostate cancer aggression. Results obtained through mass spectrometry imaging studies were subsequently correlated with a fast, ambient mass spectrometry method for potential use as a clinical tool to support image-guided prostate biopsy. IMPLICATIONS: In this study, we suggest that metabolomic differences between prostate cancers with different Gleason scores can be detected by mass spectrometry imaging.


Assuntos
Biomarcadores Tumorais/metabolismo , Metabolômica/métodos , Neoplasias da Próstata/patologia , Progressão da Doença , Humanos , Biópsia Guiada por Imagem , Lipidômica/métodos , Masculino , Espectrometria de Massas , Gradação de Tumores , Prostatectomia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/cirurgia
18.
J Clin Oncol ; 37(9): 741-750, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30715997

RESUMO

PURPOSE: Phosphatidylinositol 3-kinase (PI3K) signaling is highly active in glioblastomas. We assessed pharmacokinetics, pharmacodynamics, and efficacy of the pan-PI3K inhibitor buparlisib in patients with recurrent glioblastoma with PI3K pathway activation. METHODS: This study was a multicenter, open-label, multi-arm, phase II trial in patients with PI3K pathway-activated glioblastoma at first or second recurrence. In cohort 1, patients scheduled for re-operation after progression received buparlisib for 7 to 13 days before surgery to evaluate brain penetration and modulation of the PI3K pathway in resected tumor tissue. In cohort 2, patients not eligible for re-operation received buparlisib until progression or unacceptable toxicity. Once daily oral buparlisib 100 mg was administered on a continuous 28-day schedule. Primary end points were PI3K pathway inhibition in tumor tissue and buparlisib pharmacokinetics in cohort 1 and 6-month progression-free survival (PFS6) in cohort 2. RESULTS: Sixty-five patients were treated (cohort 1, n = 15; cohort 2, n = 50). In cohort 1, reduction of phosphorylated AKTS473 immunohistochemistry score was achieved in six (42.8%) of 14 patients, but effects on phosphoribosomal protein S6S235/236 and proliferation were not significant. Tumor-to-plasma drug level was 1.0. In cohort 2, four (8%) of 50 patients reached 6-month PFS6, and the median PFS was 1.7 months (95% CI, 1.4 to 1.8 months). The most common grade 3 or greater adverse events related to treatment were lipase elevation (n = 7 [10.8%]), fatigue (n = 4 [6.2%]), hyperglycemia (n = 3 [4.6%]), and elevated ALT (n = 3 [4.6%]). CONCLUSION: Buparlisib had minimal single-agent efficacy in patients with PI3K-activated recurrent glioblastoma. Although buparlisib achieved significant brain penetration, the lack of clinical efficacy was explained by incomplete blockade of the PI3K pathway in tumor tissue. Integrative results suggest that additional study of PI3K inhibitors that achieve more-complete pathway inhibition may still be warranted.


Assuntos
Aminopiridinas/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Morfolinas/uso terapêutico , Terapia Neoadjuvante , Recidiva Local de Neoplasia , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Aminopiridinas/efeitos adversos , Aminopiridinas/farmacocinética , Antineoplásicos/efeitos adversos , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Quimioterapia Adjuvante , Progressão da Doença , Ativação Enzimática , Feminino , Glioblastoma/enzimologia , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Morfolinas/efeitos adversos , Morfolinas/farmacocinética , Terapia Neoadjuvante/efeitos adversos , Inibidores de Fosfoinositídeo-3 Quinase/efeitos adversos , Inibidores de Fosfoinositídeo-3 Quinase/farmacocinética , Intervalo Livre de Progressão , Fatores de Tempo
19.
Ther Drug Monit ; 40(4): 469-476, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29994986

RESUMO

BACKGROUND: Therapeutic drug monitoring of antiepileptic drugs (AEDs) is often necessary to prevent associated destructive toxicities. Tandem mass spectrometry (MS/MS) with stable-isotope-labeled internal standards is considered the gold standard for the measurement of AEDs. This study presents the development and validation of a clinical ultra-performance liquid chromatography-MS/MS method for the concurrent measurement of gabapentin, lamotrigine, levetiracetam, monohydroxy derivative of oxcarbazepine, and zonisamide in human serum. METHODS: To determine the optimal assay analyte range, one year of AED therapeutic drug monitoring results (n = 1825) were evaluated. Simple protein precipitation with acetonitrile containing isotopically labeled internal standards was used. Reverse-phase ultra-performance liquid chromatography chromatographic separation was used, having a total run time of 3 minutes. Quantification of analytes was accomplished using electrospray ionization in positive ion mode and collision-induced dissociation MS. Assay parameters were evaluated per Food and Drug Administration bioanalytical guidelines. RESULTS: After evaluating internal patient data, the analytical measuring range (AMR) of the assay was established as 0.1-100 mcg/mL. All AEDs were linear across the AMR, with R values ranging from 0.9988 to 0.9999. Imprecision (% coefficient of variation) and inaccuracy (% difference) were calculated to be <20% for the lower limit of quantitation and <15% for the low, mid, and high levels of quality controls across the AMR. All AEDs demonstrated acceptable assay parameters for carryover, stability under relevant storage conditions, matrix effects, recovery, and extraction and processing efficiency. In addition, the assay displayed acceptable concordance to results obtained from a national reference laboratory, with Deming regression R of 0.99 and slope values ranging from 0.89 to 1.17. CONCLUSIONS: A simple, cost-effective, and robust ultra-performance liquid chromatography-tandem mass spectrometry method for monitoring multiple AEDs was developed and validated to address the clinical needs of patients at our institution.


Assuntos
Monitoramento de Medicamentos/métodos , Gabapentina/sangue , Lamotrigina/sangue , Levetiracetam/sangue , Oxcarbazepina/sangue , Zonisamida/sangue , Anticonvulsivantes/sangue , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa , Humanos , Limite de Detecção , Oxcarbazepina/análogos & derivados , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
20.
Anal Chem ; 90(8): 4987-4991, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29608279

RESUMO

Conventional metabolomic methods include extensive sample preparation steps and long analytical run times, increasing the likelihood of processing artifacts and limiting high throughput applications. We present here in vitro liquid extraction surface analysis mass spectrometry (ivLESA-MS), a variation on LESA-MS, performed directly on adherent cells grown in 96-well cell culture plates. To accomplish this, culture medium was aspirated immediately prior to analysis, and metabolites were extracted using LESA from the cell monolayer surface, followed by nano-electrospray ionization and MS analysis in negative ion mode. We applied this platform to characterize and compare lipidomic profiles of multiple breast cancer cell lines growing in culture (MCF-7, ZR-75-1, MDA-MB-453, and MDA-MB-231) and revealed distinct and reproducible lipidomic signatures between the cell lines. Additionally, we demonstrated time-dependent processing artifacts, underscoring the importance of immediate analysis. ivLESA-MS represents a rapid in vitro metabolomic method, which precludes the need for quenching, cell harvesting, sample preparation, and chromatography, significantly shortening preparation and analysis time while minimizing processing artifacts. This method could be further adapted to test drugs in vitro in a high throughput manner.


Assuntos
Lipídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Meios de Cultura/química , Humanos , Lipídeos/isolamento & purificação , Extração Líquido-Líquido , Metabolômica/métodos , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA