Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 19(9): 1915-1925, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33443278

RESUMO

Enzymes are proteins that catalyse chemical reactions and, as such, have been widely used to facilitate a variety of natural and industrial processes, dating back to ancient times. In fact, the global enzymes market is projected to reach $10.5 billion in 2024. The development of computational and DNA editing tools boosted the creation of artificial enzymes (de novo enzymes) - synthetic or organic molecules created to present abiological catalytic functions. These novel catalysts seek to expand the catalytic power offered by nature through new functions and properties. In this manuscript, we discuss the advantages of combining computational design with directed evolution for the development of artificial enzymes and how this strategy allows to fill in the gaps that these methods present individually by providing key insights about the sequence-function relationship. We also review examples, and respective strategies, where this approach has enabled the creation of artificial enzymes with promising catalytic activity. Such key enabling technologies are opening new windows of opportunity in a variety of industries, including pharmaceutical, chemical, biofuels, and food, contributing towards a more sustainable development.


Assuntos
Enzimas/química , Biocatálise , Química Computacional , Reação de Cicloadição , Evolução Molecular Direcionada , Enzimas/genética , Hidrólise , Mutação , Engenharia de Proteínas
2.
Methods Mol Biol ; 2178: 107-132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33128747

RESUMO

The reversible interaction between an affinity ligand and a complementary receptor has been widely explored in purification systems for several biomolecules. The development of tailored affinity ligands highly specific toward particular target biomolecules is one of the options in affinity purification systems. However, both genetic and chemical modifications in proteins and peptides widen the application of affinity ligand-tag receptors pairs toward universal capture and purification strategies. In particular, this chapter will focus on two case studies highly relevant for biotechnology and biomedical areas, namely the affinity tags and receptors employed on the production of recombinant fusion proteins, and the chemical modification of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a mandatory step before further proteomic analysis.


Assuntos
Marcadores de Afinidade/química , Cromatografia de Afinidade , Proteínas Recombinantes de Fusão , Biotecnologia , Proteômica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação
3.
Sci Rep ; 10(1): 15067, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934279

RESUMO

Bandaging is a steadfast but time-consuming component of wound care with limited technical advancements to date. Bandages must be changed and infection risk managed. Rapid-set liquid bandages are efficient alternatives but lack durability or inherent infection control. We show here that antibacterial zinc (Zn) and copper (Cu) species greatly enhance the barrier properties of the natural, waterproof, bio-adhesive polymer, shellac. The material demonstrated marked antibacterial contact properties and, in ex-vivo studies, effectively locked-in pre-applied therapeutics. When challenged in vivo with the polybacterial bovine wound infection 'digital dermatitis', Zn/Cu-shellac adhered rapidly and robustly over pre-applied antibiotic. The bandage self-degraded, appropriately, over 7 days despite extreme conditions (faecal slurry). Treatment was well-tolerated and clinical improvement was observed in animal mobility. This new class of bandage has promise for challenging topical situations in humans and other animals, especially away from controlled, sterile clinical settings where wounds urgently require protection from environmental and bacterial contamination.


Assuntos
Antibacterianos , Bandagens , Doenças dos Bovinos , Infecção da Ferida Cirúrgica , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bovinos , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/terapia , Cobre/química , Cobre/farmacologia , Feminino , Humanos , Infecção da Ferida Cirúrgica/tratamento farmacológico , Infecção da Ferida Cirúrgica/microbiologia , Infecção da Ferida Cirúrgica/veterinária , Zinco/química , Zinco/farmacologia
4.
J Control Release ; 314: 116-124, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31647980

RESUMO

Mycobacterium tuberculosis (Mtb) remains a major challenge to global health, made worse by the spread of multi-drug resistance. Currently, the efficacy and safety of treatment is limited by difficulties in achieving and sustaining adequate tissue antibiotic concentrations while limiting systemic drug exposure to tolerable levels. Here we show that nanoparticles generated from a polymer-antibiotic conjugate ('nanobiotics') deliver sustained release of active drug upon hydrolysis in acidic environments, found within Mtb-infected macrophages and granulomas, and can, by encapsulation of a second antibiotic, provide a mechanism of synchronous drug delivery. Nanobiotics are avidly taken up by infected macrophages, enhance killing of intracellular Mtb, and are efficiently delivered to granulomas and extracellular mycobacterial cords in vivo in an infected zebrafish model. We demonstrate that isoniazid (INH)-derived nanobiotics, alone or with additional encapsulation of clofazimine (CFZ), enhance killing of mycobacteria in vitro and in infected zebrafish, supporting the use of nanobiotics for Mtb therapy and indicating that nanoparticles generated from polymer-small molecule conjugates might provide a more general solution to delivering co-ordinated combination chemotherapy.


Assuntos
Antituberculosos/administração & dosagem , Isoniazida/administração & dosagem , Mycobacterium tuberculosis/efeitos dos fármacos , Nanopartículas , Animais , Antituberculosos/farmacologia , Clofazimina/administração & dosagem , Clofazimina/farmacologia , Preparações de Ação Retardada , Modelos Animais de Doenças , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos , Humanos , Isoniazida/farmacologia , Macrófagos/microbiologia , Polímeros/química , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Peixe-Zebra
5.
Int J Pharm ; 548(1): 682-688, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30009985

RESUMO

Concentrated monoclonal antibody (mAb) solutions can lead to high viscosity as a result of protein-protein interactions and pose challenges for manufacture. Dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid) is a potential excipient for reduction of protein solution viscosity and here we describe new DPA salts with improved aqueous solubility. Crystallinity and solubility screens identified ethanolamine and diethanolamine as two promising counterions which generated crystalline, high melting point, anhydrous salt forms of DPA at 2:1 M stoichiometry. These salts significantly reduced the solution viscosity of five mAbs, equal to or better than that for the addition of arginine hydrochloride at equivalent osmolality. The presence of the DPA salts in solution did not significantly perturb the melting point of the mAbs, as determined by calorimetry, indicating an absence of any destabilization of protein conformation. Addition of the DPA salts to the mAb solutions stored at 5 °C over 6 months did not cause additional loss of the monomer fraction, though evidence of increased aggregation and fragmentation for three of the five mAbs was observed during 40 °C (accelerated and stressed) storage. Overall, this study demonstrates that ethanolamine-DPA and diethanolamine-DPA can serve as two novel excipients for viscosity reduction and could be considered by formulation scientists when developing highly concentrated mAb formulations.


Assuntos
Anticorpos Monoclonais/química , Etanolaminas/química , Excipientes/química , Ácidos Picolínicos/química , Estabilidade de Medicamentos , Sais , Soluções , Viscosidade
6.
Int J Pharm ; 526(1-2): 332-338, 2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28495581

RESUMO

Ionic excipients are commonly used in aqueous therapeutic monoclonal antibody (mAb) formulations. Novel excipients are of industrial interest, with a recent focus on Arg salt forms and their application as viscosity reducing and stabilizing additives. Here, we report that the calcium salt of dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid), uniquely present in nature in the core of certain bacterial spores, reduces the viscosity of a mAb formulated at 150mg/mL, below that achieved by Arg hydrochloride at the same concentration (10mM). DPA also reduced the reversible phase separation of the same formulation, which characteristically occurs for this mAb upon cooling to 4°C. Differential scanning calorimetry and differential scanning fluorimetry did not reveal a conformation destabilisation of the mAb in the presence of 10mM DPA, or by the related quinolinic acid (QA, pyridine-2,3-dicarboxylic acid). However, fluorescence spectrophotometry did reveal localised (aromatic) conformational changes to the mAb attributed to DPA, dependent on the salt form. While precise mechanisms of action remain to be identified, our preliminary data suggest that these DPA salts are worthy of further investigation as novel ionic excipient for biologics formulation.


Assuntos
Anticorpos Monoclonais/química , Excipientes/química , Ácidos Picolínicos/química , Esporos Bacterianos , Viscosidade
7.
Artigo em Inglês | MEDLINE | ID: mdl-27469904

RESUMO

Affinity chromatography is a widespread technique for the enrichment and isolation of biologics, which relies on the selective and reversible interaction between affinity ligands and target molecules. Small synthetic affinity ligands are valuable alternatives due to their robustness, low cost and fast ligand development. This work reports, for the first time, the use of a sequential Petasis-Ugi multicomponent reaction to generate rationally designed solid-phase combinatorial libraries of small synthetic ligands, which can be screened for the selection of new affinity adsorbents towards biological targets. As a proof of concept, the Petasis-Ugi reaction was here employed in the discovery of affinity ligands suitable for phosphopeptide enrichment. A combinatorial library of 84 ligands was designed, synthesized on a chromatographic solid support and screened in situ for the specific binding of phosphopeptides binding human BRCA1C-terminal domains. The success of the reaction on the chromatographic matrix was confirmed by both inductively coupled plasma atomic emission spectroscopy and fluorescence microscopy. Three lead ligands were identified due to their superior performance in terms of binding capacity and selectivity towards the phosphorylated moiety on peptides, which showed the feasibility of the Petasis-Ugi reaction for affinity ligand development.


Assuntos
Técnicas de Química Combinatória/métodos , Peptídeos/química , Cromatografia de Afinidade , Ligantes , Microscopia de Fluorescência , Fosforilação
8.
J Chromatogr A ; 1457: 76-87, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27345211

RESUMO

Phosphorylation is a reversible post-translational modification of proteins that controls a plethora of cellular processes and triggers specific physiological responses, for which there is a need to develop tools to characterize phosphorylated targets efficiently. Here, a combinatorial library of triazine-based synthetic ligands comprising 64 small molecules has been rationally designed, synthesized and screened for the enrichment of phosphorylated peptides. The lead candidate (coined A8A3), composed of histidine and phenylalanine mimetic components, showed high binding capacity and selectivity for binding mono- and multi-phosphorylated peptides at pH 3. Ligand A8A3 was coupled onto both cross-linked agarose and magnetic nanoparticles, presenting higher binding capacities (100-fold higher) when immobilized on the magnetic support. The magnetic adsorbent was further screened against a tryptic digest of two phosphorylated proteins (α- and ß-caseins) and one non-phosphorylated protein (bovine serum albumin, BSA). The MALDI-TOF mass spectra of the eluted peptides allowed the identification of nine phosphopeptides, comprising both mono- and multi-phosphorylated peptides.


Assuntos
Caseínas/química , Fosfopeptídeos/química , Adsorção , Animais , Materiais Biomiméticos , Bovinos , Técnicas de Química Combinatória , Compostos Férricos , Ligantes , Nanopartículas , Fosforilação , Soroalbumina Bovina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triazinas/química
9.
Methods Mol Biol ; 1355: 193-209, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26584927

RESUMO

Magnetic nanocomposites are hybrid structures consisting of an iron oxide (Fe3O4/γ-Fe2O3) superparamagnetic core and a coating shell which presents affinity for a specific target molecule. Within the scope of phosphopeptide enrichment, the magnetic core is usually first functionalized with an intermediate layer of silica or carbon to improve dispersibility and increase specific area, and then with an outer layer of a phosphate-affinity material. Fe3O4-coating materials include metal oxides, rare earth metal-based compounds, immobilized-metal ions, polymers, and many others. This chapter provides a generic overview of the different materials that can be found in literature and their advantages and drawbacks.


Assuntos
Nanopartículas de Magnetita/química , Nanotecnologia , Fosfopeptídeos/análise , Proteômica/métodos , Óxido de Alumínio/química , Animais , Óxido Ferroso-Férrico/química , Humanos , Mapeamento de Peptídeos , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosforilação , Polímeros/química , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Titânio/química , Zircônio/química
10.
Water Res ; 66: 160-168, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25201339

RESUMO

Industrial and urban activities yield large amounts of contaminated groundwater, which present a major health issue worldwide. Infectious diseases are the most common health risk associated with drinking-water and wastewater remediation is a major concern of our modern society. The field of wastewater treatment is being revolutionized by new nano-scale water disinfection devices which outperform most currently available technologies. In particular, iron oxide magnetic nanoparticles (MNPs) have been widely used in environmental applications due to their unique physical-chemical properties. In this work, poly(ethylene) glycol (PEG)-coated MNPs have been functionalized with (RW)3, an antimicrobial peptide, to yield a novel magnetic-responsive support with antimicrobial activity against Escherichia coli K-12 DSM498 and Bacillus subtilis 168. The magnetic-responsive antimicrobial device showed to be able to successfully disinfect the surrounding solution. Using a rapid high-throughput screening platform, the minimal inhibitory concentration (MIC) was determined to be 500 µM for both strains with a visible bactericidal effect.


Assuntos
Anti-Infecciosos , Purificação da Água/métodos , Nanopartículas/química , Polietilenoglicóis/química
11.
Methods Mol Biol ; 1129: 147-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24648075

RESUMO

The reversible interaction between an affinity ligand and a complementary receptor has been widely explored in purification systems for several biomolecules. The development of tailored affinity ligands highly specific towards particular target biomolecules is one of the options in affinity purification systems. However, both genetic and chemical modifications on proteins and peptides widen the application of affinity ligand-tag receptor pairs towards universal capture and purification strategies. In particular, this chapter will focus on two case studies highly relevant for biotechnology and biomedical areas, namely, the affinity tags and receptors employed on the production of recombinant fusion proteins and the chemical modification of phosphate groups on proteins and peptides and the subsequent specific capture and enrichment, a mandatory step before further proteomic analysis.


Assuntos
Marcadores de Afinidade , Peptídeos/química , Proteínas/isolamento & purificação , Sequência de Aminoácidos , Dados de Sequência Molecular
12.
Sci Total Environ ; 487: 771-7, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24315028

RESUMO

Laboratory studies were conducted to evaluate the interaction between bare and polymer-coated magnetic nanoparticles (MNPs) with various environmentally relevant carrying solutions including natural oceanic seawater with and without addition of algal exopolymeric substances (EPS). The MNPs were coated with three different stabilising agents, namely gum Arabic (GA-MNP), dextran (D-MNP) and carboxymethyl-dextran (CMD-MNP). The colloidal stability of the suspensions was evaluated over 48 h and we demonstrated that: (i) hydrodynamic diameters increased over time regardless of carrying solution for all MNPs except the GA-coated ones; however, the relative changes were carrying solution- and coat-dependent; (ii) polydispersity indexes of the freshly suspended MNPs are below 0.5 for all coated MNPs, unlike the much higher values obtained for the uncoated MNPs; (iii) freshly prepared MNP suspensions (both coated and uncoated) in Milli-Q (MQ) water show high colloidal stability as indicated by zeta-potential values below -30 mV, which however decrease in absolute value within 48 h for all MNPs regardless of carrying solution; (iv) EPS seems to "stabilise" the GA-coated and the CMD-coated MNPs, but not the uncoated or the D-coated MNPs, which form larger aggregates within 48 h; (v) despite this aggregation, iron (Fe)-leaching from MNPs is sustained over 48h, but remained within the range of 3-9% of the total iron-content of the initially added MNPs regardless of suspension media and capping agent. The environmental implications of our findings and biotechnological applicability of MNPs are discussed.


Assuntos
Nanopartículas de Magnetita/química , Modelos Químicos , Polímeros/química , Água do Mar/química , Poluentes Químicos da Água/química
13.
BMC Biotechnol ; 13: 44, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23688064

RESUMO

BACKGROUND: In situ magnetic separation (ISMS) has emerged as a powerful tool to overcome process constraints such as product degradation or inhibition of target production. In the present work, an integrated ISMS process was established for the production of his-tagged single chain fragment variable (scFv) D1.3 antibodies ("D1.3") produced by E. coli in complex media. This study investigates the impact of ISMS on the overall product yield as well as its biocompatibility with the bioprocess when metal-chelate and triazine-functionalized magnetic beads were used. RESULTS: Both particle systems are well suited for separation of D1.3 during cultivation. While the triazine beads did not negatively impact the bioprocess, the application of metal-chelate particles caused leakage of divalent copper ions in the medium. After the ISMS step, elevated copper concentrations above 120 mg/L in the medium negatively influenced D1.3 production. Due to the stable nature of the model protein scFv D1.3 in the biosuspension, the application of ISMS could not increase the overall D1.3 yield as was shown by simulation and experiments. CONCLUSIONS: We could demonstrate that triazine-functionalized beads are a suitable low-cost alternative to selectively adsorb D1.3 fragments, and measured maximum loads of 0.08 g D1.3 per g of beads. Although copper-loaded metal-chelate beads did adsorb his-tagged D1.3 well during cultivation, this particle system must be optimized by minimizing metal leakage from the beads in order to avoid negative inhibitory effects on growth of the microorganisms and target production. Hereby, other types of metal chelate complexes should be tested to demonstrate biocompatibility. Such optimized particle systems can be regarded as ISMS platform technology, especially for the production of antibodies and their fragments with low stability in the medium. The proposed model can be applied to design future ISMS experiments in order to maximize the overall product yield while the amount of particles being used is minimized as well as the number of required ISMS steps.


Assuntos
Magnetismo/métodos , Anticorpos de Cadeia Única/isolamento & purificação , Reatores Biológicos , Cobre/química , Meios de Cultura/química , Escherichia coli , Metais/química , Microesferas , Modelos Teóricos , Anticorpos de Cadeia Única/biossíntese , Triazinas/química
14.
Trends Biotechnol ; 30(2): 100-10, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21944550

RESUMO

Protein phosphorylation is a complex and highly dynamic process involved in numerous biological events. Abnormal phosphorylation is one of the underlying mechanisms for the development of cancer and metabolic disorders. The identification and absolute quantification of specific phospho-signatures can help elucidate protein functions in signaling pathways and facilitate the development of new and personalized diagnostic and therapeutic tools. This review presents a variety of strategies currently utilized for the enrichment of phosphorylated proteins and peptides before mass spectrometry analysis during proteomic studies. The investigation of specific affinity reagents, allied to the integration of different enrichment processes, is triggering the development of more selective, rapid and cost-effective high-throughput automated platforms.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas/isolamento & purificação , Proteínas/metabolismo , Proteoma/análise , Ensaios de Triagem em Larga Escala/métodos , Espectrometria de Massas/métodos , Fosforilação , Proteínas/química , Transdução de Sinais
15.
J Mol Recognit ; 23(5): 462-71, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20119950

RESUMO

A novel magnetic support based on gum Arabic (GA) coated iron oxide magnetic nanoparticles (MNP) has been endowed with affinity properties towards immunoglobulin G (IgG) molecules. The success of the in situ triazine ligand synthesis was confirmed by fluorescence assays. Two synthetic ligands previously developed for binding to IgG, named as ligand 22/8 (artificial Protein A) and ligand 8/7 (artificial Protein L) were immobilized on to MNPs coated with GA (MNP_GA). The dimension of the particles core was not affected by the surface functionalization with GA and triazine ligands. The hydrodynamic diameters of the magnetic supports indicate that the coupling of GA leads to the formation of larger agglomerates of particles with about 1 microm, but the introduction of the triazine ligands leads to a decrease on MNPs size. The non-functionalized MNP_GA bound 28 mg IgG/g, two times less than bare MNP (60 mg IgG/g). MNP_GA modified with ligand 22/8 bound 133 mg IgG/g support, twice higher than the value obtained for ligand 8/7 magnetic adsorbents (65 mg/g). Supports modified with ligand 22/8 were selected to study the adsorption and the elution of IgG. The adsorption of human IgG on this support followed a Langmuir behavior with a Q(máx) of 344 mg IgG/g support and K(a) of 1.5 x 10(5) M. The studies on different elution conditions indicated that although the 0.05 M citrate buffer (pH 3) presented good recovery yields (elution 64% of bound protein), there was occurrence of iron leaching at this acidic pH. Therefore, a potential alternative would be to elute bound protein with a 0.05 M glycine-NaOH (pH 11) buffer.


Assuntos
Anticorpos/química , Goma Arábica/química , Ligantes , Magnetismo , Nanopartículas Metálicas/química , Adsorção , Animais , Afinidade de Anticorpos , Compostos Férricos/química , Humanos , Estrutura Molecular , Tamanho da Partícula , Sefarose/química , Espectroscopia de Infravermelho com Transformada de Fourier , Triazinas/química
16.
J Biotechnol ; 144(4): 313-20, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19737584

RESUMO

The surface modification of iron oxide magnetic nanoparticles (MNPs) with gum Arabic (GA) via adsorption and covalent coupling was studied. The adsorption of GA was assessed during MNP chemical synthesis by the co-precipitation method (MNP_GA), and after MNP synthesis on both bare magnetite and MNP_GA. The covalent immobilization of GA at the surface of aldehyde-activated (MNP_GA(APTES)) or aminated MNPs (MNP_GA(EDC)) was achieved through free terminal amino and carboxylate groups from GA. The presence of GA at the surface of the MNPs was confirmed by FTIR and by the quantification of GA by the bicinchoninic acid test. Results indicated that the maximum of GA coating was obtained for the covalent coupling of GA through its free carboxylate groups (MNP_GA(EDC)), yielding a maximum of 1.8g of GA bound/g of dried particles. The hydrodynamic diameter of MNPs modified with GA after synthesis resulted in the lowest values, in opposition to the MNPs co-precipitated with GA which presented the tendency to form larger aggregates of up to 1mum. The zeta potentials indicate the existence of negatively charged surfaces before and after GA coating. The potential of the GA coated MNPs for further biomolecule attachment was assessed through anchorage of a model antibody to aldehyde-functionalized MNP_GA and its subsequent detection with an FITC labeled anti-antibody.


Assuntos
Anticorpos/química , Materiais Biocompatíveis/química , Biotecnologia/métodos , Compostos Férricos/química , Goma Arábica/química , Magnetismo , Nanopartículas Metálicas/química , Adsorção , Animais , Anticorpos/análise , Técnicas Biossensoriais , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA