Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38674596

RESUMO

The emergence of antibiotic-resistant microorganisms poses a significant threat to human health worldwide. Recent advances have led to the discovery of molecules with potent antimicrobial activity from environmental sources. In this study, fifteen bacterial isolates were obtained from agricultural and polluted soil samples collected from different areas of the cities of Jizan and Jeddah. These isolates were screened for antagonistic activity against a set of human pathogenic bacterial strains. The results showed that two Bacillus strains, identified as Bacillus atrophaeus and Bacillus amyloliquefaciens based on 16S rDNA, synthesized bacteriocin with strong antibacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 33591, Pseudomonas aeruginosa ATCC 9027, Salmonella typhimum ATCC 14028, carbapenem-resistant E. coli, and MRSA 2. To optimize bacteriocin production, the effects of medium composition, incubation period, temperature, and pH were investigated. Nutrient broth and Mueller-Hinton broth were chosen as the optimal original media for bacteriocin production. The optimal incubation period, temperature, and pH were found to be 48 h at 37 °C and 7 pH in Bacillus atrophaeus and 72 h at 37 °C and 8 pH in Bacillus amyloliquefaciens. Batch cultures of Bacillus atrophaeus and Bacillus amyloliquefaciens were grown in a 10 L benchtop bioreactor, and pH control was found to significantly increase the production of bacteriocin by two-fold compared to uncontrolled conditions. The time course of growth, substrate consumption, pH, and enzyme production were investigated. This study demonstrates the potential of optimizing culture conditions and batch process control to enhance bacteriocin production by Bacillus spp.

2.
RSC Adv ; 12(42): 27131-27144, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36276042

RESUMO

Although tris(8-hydroxyquinoline)aluminum (Alq3), a fluorescent optical organometallic material, is known for its applications in optoelectronics, it has only few and limited applications in the biological field. In this study, the antibacterial activity of Alq3 micro and nanostructures was investigated. We prepared Alq3 nanostructures. We prepared nanosized Alq3 as rice-like structures that assembled into flower shapes with an α-crystal phase. Then, Alq3 micro and nanostructure antibacterial activities were estimated against seven human pathogenic bacterial strains. Besides, we compared their antibacterial activities with those of standard antibiotics. The minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and IC50 were evaluated. Alq3 micro and nanostructure antibacterial activity showed considerable values compared to standard antibiotics. Besides, the obtained data revealed that the antibacterial activity of Alq3 in nanostructures with a new morphology is more than that in microstructures. The antibacterial activity of Alq3 nanostructures was attributed to their more surface interactions with the bacterial cell wall. The molecules of 8-hydroxyquinoline in the Alq3 structure could play crucial roles in its antibacterial activity. To apply the achieved results, Alq3 was incorporated with polystyrene (PS) in a ratio of 2% to fabricate a PS/Alq3 composite and used to coat glass beakers, which showed inhibition in the bacterial growth reduced to 65% compared with non-coated beakers. The finding of this study showed that Alq3 could be used as a promising antimicrobial coating.

3.
Saudi J Biol Sci ; 29(8): 103342, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35846388

RESUMO

Backgrounds: Diverse marine habitats along Jeddah's Red Sea coast support rich biodiversity. Few studies have been done on its diverse communities, especially its microbial counterparts. Metagenomic analysis of marine benthic micro-eukaryotic communities was performed for the first time on the Red Sea coast of Jeddah. This research looks into their community structure and metabolic potential. Methods: Next-generation sequencing was used to examine the micro-eukaryotic communities of seven sedimentary soil samples from four Jeddah coast locations. After isolating DNA from seven benthic sedimentary soil samples, the 18S rDNA V4 regions were amplified and sequenced on the Illumina MiSeq. It was also verified using an Agilent Technologies 2100 Bioanalyzer with a DNA 1000 chip (Agilent Technologies, Fisher Scientific). A standard curve of fluorescence readings generated by qPCR quantification using the Illumina library was achieved using the GS FLX library. Metagenomic data analysis was used to evaluate the microbial communities' biochemical and enzymatic allocations in studied samples. Results: Blast analysis showed that the top ten phyla were Annelida, Eukaryota, Diatomea, Porifera, Phragmoplastophyta, Arthropoda, Dinoflagellata, Xenacoelomorpha Nematoda, and uncultured. Annelida was also found in the highest percentage (93%), in the sample M followed by Porifera (64%), the most abundant in the control sample then Eukaryotes (61%), Phragmatoplastophyta (55%), Arthropoda, and Diatomea (the least common) (32%). community diversity analysis: using Shannon and inverse Simpson indices showed sediment composition to be effective. Also, PICRUST2 indicated that the most abundant pathways were pyruvate fermentation to isobutanol, pyrimidine deoxyribonucleotide phosphorylation, adenosine ribonucleotide de novo biosynthesis, guanosine ribonucleotide de novo biosynthesis, NAD salvage pathway I, the super pathway of glyoxylate bypass and aerobic respiration I (cytochrome c). Conclusion: Results showed that high throughput metagenomics could reveal species diversity and estimate gene profiles. Environmental factors appear to be more important than geographic variation in determining the structure of these microbial communities. This study provides the first report of marine benthic micro-eukaryotic communities found on the Red Sea coast of Jeddah and will serve as a good platform for future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA