Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biol Cell ; 115(8): e2200104, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37224184

RESUMO

Although it is well-known that cancer-associated fibroblasts (CAFs) play a key role in regulating tumor progression, the effects of mechanical tissue changes on CAFs are understudied. Myofibroblastic CAFs (myCAFs), in particular, are known to alter tumor matrix architecture and composition, heavily influencing the mechanical forces in the tumor microenvironment (TME), but much less is known about how these mechanical changes initiate and maintain the myCAF phenotype. Additionally, recent studies have pointed to the existence of CAFs in circulating tumor cell clusters, indicating that CAFs may be subject to mechanical forces beyond the primary TME. Due to their pivotal role in cancer progression, targeting CAF mechanical regulation may provide therapeutic benefit. Here, we will discuss current knowledge and summarize existing gaps in how CAFs regulate and are regulated by matrix mechanics, including through stiffness, solid and fluid stresses, and fluid shear stress.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Fibroblastos Associados a Câncer/patologia , Fibroblastos/patologia , Neoplasias/patologia , Microambiente Tumoral
2.
Acta Biomater ; 160: 98-111, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822485

RESUMO

The primary source of strength in menisci, tendons, and ligaments are hierarchical collagen fibers; however, these fibers are not regenerated after injury nor in engineered replacements, resulting in limited repair options. Collagen strength is reliant on fiber alignment, density, diameter, and crosslinking. Recently, we developed a culture system which guides cells in high-density collagen gels to develop native-like hierarchically organized collagen fibers, which match native fiber alignment and diameters by 6 weeks. However, tensile moduli plateau at 1MPa, suggesting crosslinking may be lacking. Collagen crosslinking is regulated by lysyl oxidase (LOX) which forms immature crosslinks that condense into mature trivalent crosslinks. Trivalent crosslinks are thought to be the primarily source of strength in fibers, but it's not well understood how they form. The objective of this study was to evaluate the effect of exogenous LOX in our culture system at different stages of hierarchical fiber formation to produce stronger replacements and to better understand factors affecting crosslink maturation. We found treatment with LOX isoform LOXL2 did not restrict hierarchical fiber formation, with constructs still forming aligned collagen fibrils by 2 weeks, larger fibers by 4 weeks, and early fascicles by 6 weeks. However, LOXL2 treatment did significantly increase mature pyridinium (PYD) crosslink accumulation and tissue mechanics, with timing of LOXL2 supplementation during fiber formation having a significant effect. Overall, we found one week of LOXL2 supplementation at 4 weeks produced constructs with native-like fiber organization, increased PYD accumulation, and increased mechanics, ultimately matching the tensile modulus of immature bovine menisci. STATEMENT OF SIGNIFICANCE: Collagen fibers are the primary source of strength and function in connective tissues throughout the body, however it remains a challenge to develop these fibers in engineered replacements, greatly reducing treatment options. Here we demonstrate lysyl oxidase like 2 (LOXL2) can be used to significantly improve the mechanics of tissue engineered constructs, but timing of application is important and will most likely depend on degree of collagen organization or maturation. Currently there is limited understanding of how collagen crosslinking is regulated, and this system is a promising platform to further investigate cellular regulation of LOX crosslinking. Understanding the mechanism that regulates LOX production and activity is needed to ultimately regenerate functional repair or replacements for connective tissues throughout the body.


Assuntos
Menisco , Proteína-Lisina 6-Oxidase , Animais , Bovinos , Colágeno , Matriz Extracelular , Engenharia Tecidual/métodos
3.
Elife ; 112022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36475545

RESUMO

Cancer cell migration is highly heterogeneous, and the migratory capability of cancer cells is thought to be an indicator of metastatic potential. It is becoming clear that a cancer cell does not have to be inherently migratory to metastasize, with weakly migratory cancer cells often found to be highly metastatic. However, the mechanism through which weakly migratory cells escape from the primary tumor remains unclear. Here, utilizing phenotypically sorted highly and weakly migratory human breast cancer cells, we demonstrate that weakly migratory metastatic cells disseminate from the primary tumor via communication with stromal cells. While highly migratory cells are capable of single cell migration, weakly migratory cells rely on cell-cell signaling with fibroblasts to escape the primary tumor. Weakly migratory cells release microvesicles rich in tissue transglutaminase 2 (Tg2) which activate murine fibroblasts and lead weakly migratory cancer cell migration in vitro. These microvesicles also induce tumor stiffening and fibroblast activation in vivo and enhance the metastasis of weakly migratory cells. Our results identify microvesicles and Tg2 as potential therapeutic targets for metastasis and reveal a novel aspect of the metastatic cascade in which weakly migratory cells release microvesicles which activate fibroblasts to enhance cancer cell dissemination.


Assuntos
Neoplasias da Mama , Micropartículas Derivadas de Células , Animais , Camundongos , Humanos , Feminino , Proteína 2 Glutamina gama-Glutamiltransferase , Neoplasias da Mama/patologia , Fibroblastos/patologia , Movimento Celular , Linhagem Celular Tumoral , Metástase Neoplásica/patologia
4.
Sci Adv ; 8(46): eabo1673, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36399580

RESUMO

Diabetes mellitus is a complex metabolic disorder that is associated with an increased risk of breast cancer. Despite this correlation, the interplay between tumor progression and diabetes, particularly with regard to stiffening of the extracellular matrix, is still mechanistically unclear. Here, we established a murine model where hyperglycemia was induced before breast tumor development. Using the murine model, in vitro systems, and patient samples, we show that hyperglycemia increases tumor growth, extracellular matrix stiffness, glycation, and epithelial-mesenchymal transition of tumor cells. Upon inhibition of glycation or mechanotransduction in diabetic mice, these same metrics are reduced to levels comparable with nondiabetic tumors. Together, our study describes a novel biomechanical mechanism by which diabetic hyperglycemia promotes breast tumor progression via glycating the extracellular matrix. In addition, our work provides evidence that glycation inhibition is a potential adjuvant therapy for diabetic cancer patients due to the key role of matrix stiffening in both diseases.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Neoplasias , Camundongos , Animais , Mecanotransdução Celular , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA