Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 30(5): 1017-1021, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666645

RESUMO

Across 133 confirmed mpox zoonotic index cases reported during 1970-2021 in Africa, cases occurred year-round near the equator, where climate is consistent. However, in tropical regions of the northern hemisphere under a dry/wet season cycle, cases occurred seasonally. Our findings further support the seasonality of mpox zoonotic transmission risk.


Assuntos
Estações do Ano , Zoonoses , Humanos , África/epidemiologia , Animais , Zoonoses/epidemiologia , História do Século XXI , História do Século XX
2.
PLoS One ; 18(9): e0290233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37703223

RESUMO

BACKGROUND: The number of malaria cases worldwide has increased, with over 241 million cases and 69,000 more deaths in 2020 compared to 2019. Burkina Faso recorded over 11 million malaria cases in 2020, resulting in nearly 4,000 deaths. The overall incidence of malaria in Burkina Faso has been steadily increasing since 2016. This study investigates the spatiotemporal pattern and environmental and meteorological determinants of malaria incidence in Burkina Faso. METHODS: We described the temporal dynamics of malaria cases by detecting the transmission periods and the evolution trend from 2013 to 2018. We detected hotspots using spatial scan statistics. We assessed different environmental zones through a hierarchical clustering and analyzed the environmental and climatic data to identify their association with malaria incidence at the national and at the district's levels through generalized additive models. We also assessed the time lag between malaria peaks onset and the rainfall at the district level. The environmental and climatic data were synthetized into indicators. RESULTS: The study found that malaria incidence had a seasonal pattern, with high transmission occurring during the rainy seasons. We also found an increasing trend in the incidence. The highest-risk districts for malaria incidence were identified, with a significant expansion of high-risk areas from less than half of the districts in 2013-2014 to nearly 90% of the districts in 2017-2018. We identified three classes of health districts based on environmental and climatic data, with the northern, south-western, and western districts forming separate clusters. Additionally, we found that the time lag between malaria peaks onset and the rainfall at the district level varied from 7 weeks to 17 weeks with a median at 10 weeks. Environmental and climatic factors have been found to be associated with the number of cases both at global and districts levels. CONCLUSION: The study provides important insights into the environmental and spatiotemporal patterns of malaria in Burkina Faso by assessing the spatio temporal dynamics of Malaria cases but also linking those dynamics to the environmental and climatic factors. The findings highlight the importance of targeted control strategies to reduce the burden of malaria in high-risk areas as we found that Malaria epidemiology is complex and linked to many factors that make some regions more at risk than others.


Assuntos
Malária , Humanos , Burkina Faso/epidemiologia , Incidência , Análise por Conglomerados , Malária/epidemiologia , Meteorologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-36361240

RESUMO

INTRODUCTION: Despite the implementation of control strategies at the national scale, the malaria burden remains high in Mali, with more than 2.8 million cases reported in 2019. In this context, a new approach is needed, which accounts for the spatio-temporal variability of malaria transmission at the local scale. This study aimed to describe the spatio-temporal variability of malaria incidence and the associated meteorological and environmental factors in the health district of Kati, Mali. METHODS: Daily malaria cases were collected from the consultation records of the 35 health areas of Kati's health district, for the period 2015-2019. Data on rainfall, relative humidity, temperature, wind speed, the normalized difference vegetation index, air pressure, and land use-land cover were extracted from open-access remote sensing sources, while data on the Niger River's height and flow were obtained from the National Department of Hydraulics. To reduce the dimension and account for collinearity, strongly correlated meteorological and environmental variables were combined into synthetic indicators (SI), using a principal component analysis. A generalized additive model was built to determine the lag and the relationship between the main SIs and malaria incidence. The transmission periods were determined using a change-point analysis. High-risk clusters (hotspots) were detected using the SatScan method and were ranked according to risk level, using a classification and regression tree analysis. RESULTS: The peak of the malaria incidence generally occurred in October. Peak incidence decreased from 60 cases per 1000 person-weeks in 2015, to 27 cases per 1000 person-weeks in 2019. The relationship between the first SI (river flow and height, relative humidity, and rainfall) and malaria incidence was positive and almost linear. A non-linear relationship was found between the second SI (air pressure and temperature) and malaria incidence. Two transmission periods were determined per year: a low transmission period from January to July-corresponding to a persisting transmission during the dry season-and a high transmission period from July to December. The spatial distribution of malaria hotspots varied according to the transmission period. DISCUSSION: Our study confirmed the important variability of malaria incidence and found malaria transmission to be associated with several meteorological and environmental factors in the Kati district. The persistence of malaria during the dry season and the spatio-temporal variability of malaria hotspots reinforce the need for innovative and targeted strategies.


Assuntos
Malária , Humanos , Incidência , Mali/epidemiologia , Malária/prevenção & controle , Estações do Ano , Temperatura , Análise Espaço-Temporal
4.
Parasit Vectors ; 15(1): 278, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927679

RESUMO

BACKGROUND: In malaria endemic countries, seasonal malaria chemoprevention (SMC) interventions are performed during the high malaria transmission in accordance with epidemiological surveillance data. In this study we propose a predictive approach for tailoring the timing and number of cycles of SMC in all health districts of Mali based on sub-national epidemiological surveillance and rainfall data. Our primary objective was to select the best of two approaches for predicting the onset of the high transmission season at the operational scale. Our secondary objective was to evaluate the number of malaria cases, hospitalisations and deaths in children under 5 years of age that would be prevented annually and the additional cost that would be incurred using the best approach. METHODS: For each of the 75 health districts of Mali over the study period (2014-2019), we determined (1) the onset of the rainy season period based on weekly rainfall data; (ii) the onset and duration of the high transmission season using change point analysis of weekly incidence data; and (iii) the lag between the onset of the rainy season and the onset of the high transmission. Two approaches for predicting the onset of the high transmission season in 2019 were evaluated. RESULTS: In the study period (2014-2019), the onset of the rainy season ranged from week (W) 17 (W17; April) to W34 (August). The onset of the high transmission season ranged from W25 (June) to W40 (September). The lag between these two events ranged from 5 to 12 weeks. The duration of the high transmission season ranged from 3 to 6 months. The best of the two approaches predicted the onset of the high transmission season in 2019 to be in June in two districts, in July in 46 districts, in August in 21 districts and in September in six districts. Using our proposed approach would prevent 43,819 cases, 1943 hospitalisations and 70 deaths in children under 5 years of age annually for a minimal additional cost. Our analysis shows that the number of cycles of SMC should be changed in 36 health districts. CONCLUSION: Adapting the timing of SMC interventions using our proposed approach could improve the prevention of malaria cases and decrease hospitalisations and deaths. Future studies should be conducted to validate this approach.


Assuntos
Antimaláricos , Malária , Antimaláricos/uso terapêutico , Quimioprevenção , Criança , Pré-Escolar , Humanos , Lactente , Malária/tratamento farmacológico , Malária/epidemiologia , Malária/prevenção & controle , Mali/epidemiologia , Estações do Ano
5.
Sci Rep ; 12(1): 8271, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585101

RESUMO

Malaria is the leading cause of morbidity and mortality in Mali. Between 2017 and 2020, the number of cases increased in the country, with 2,884,827 confirmed cases and 1454 reported deaths in 2020. We performed a malaria risk stratification at the health district level in Mali with a view to proposing targeted control interventions. Data on confirmed malaria cases were obtained from the District Health Information Software 2, data on malaria prevalence and mortality in children aged 6-59 months from the 2018 Demographic and Health Survey, entomological data from Malian research institutions working on malaria in the sentinel sites of the National Malaria Control Program (NMCP), and environmental data from the National Aeronautics and Space Administration. A stratification of malaria risk was performed. Targeted malaria control interventions were selected based on spatial heterogeneity of malaria incidence, malaria prevalence in children, vector resistance distribution, health facility usage, child mortality, and seasonality of transmission. These interventions were discussed with the NMCP and the different funding partners. In 2017-2019, median incidence across the 75 health districts was 129.34 cases per 1000 person-years (standard deviation = 86.48). Risk stratification identified 12 health districts in very low transmission areas, 19 in low transmission areas, 20 in moderate transmission areas, and 24 in high transmission areas. Low health facility usage and increased vector resistance were observed in high transmission areas. Eight intervention combinations were selected for implementation. Our work provides an updated risk stratification using advanced statistical methods to inform the targeting of malaria control interventions in Mali. This stratification can serve as a template for continuous malaria risk stratifications in Mali and other countries.


Assuntos
Malária , Animais , Criança , Vetores de Doenças , Humanos , Incidência , Malária/epidemiologia , Malária/prevenção & controle , Mali/epidemiologia , Prevalência
6.
Sci Rep ; 11(1): 20027, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625589

RESUMO

Malaria control and prevention programs are more efficient and cost-effective when they target hotspots or select the best periods of year to implement interventions. This study aimed to identify the spatial distribution of malaria hotspots at the village level in Diébougou health district, Burkina Faso, and to model the temporal dynamics of malaria cases as a function of meteorological conditions and of the distance between villages and health centres (HCs). Case data for 27 villages were collected in 13 HCs. Meteorological data were obtained through remote sensing. Two synthetic meteorological indicators (SMIs) were created to summarize meteorological variables. Spatial hotspots were detected using the Kulldorf scanning method. A General Additive Model was used to determine the time lag between cases and SMIs and to evaluate the effect of SMIs and distance to HC on the temporal evolution of malaria cases. The multivariate model was fitted with data from the epidemic year to predict the number of cases in the following outbreak. Overall, the incidence rate in the area was 429.13 cases per 1000 person-year with important spatial and temporal heterogeneities. Four spatial hotspots, involving 7 of the 27 villages, were detected, for an incidence rate of 854.02 cases per 1000 person-year. The hotspot with the highest risk (relative risk = 4.06) consisted of a single village, with an incidence rate of 1750.75 cases per 1000 person-years. The multivariate analysis found greater variability in incidence between HCs than between villages linked to the same HC. The time lag that generated the better predictions of cases was 9 weeks for SMI1 (positively correlated with precipitation variables) and 16 weeks for SMI2 (positively correlated with temperature variables. The prediction followed the overall pattern of the time series of reported cases and predicted the onset of the following outbreak with a precision of less than 3 weeks. This analysis of malaria cases in Diébougou health district, Burkina Faso, provides a powerful prospective method for identifying and predicting high-risk areas and high-transmission periods that could be targeted in future malaria control and prevention campaigns.


Assuntos
Malária , Meteorologia , Análise Espaço-Temporal , Burkina Faso/epidemiologia , Humanos , Incidência , Malária/epidemiologia , Malária/prevenção & controle , Malária/transmissão , Tecnologia de Sensoriamento Remoto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA