Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Blood Adv ; 4(4): 676-686, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32084260

RESUMO

Various grading systems are currently used for chimeric antigen receptor (CAR) T-cell-related toxicity, cytokine release syndrome (CRS), and immune effector cell-associated neurotoxicity syndrome (ICANS). We compared the recently proposed American Society for Transplantation and Cellular Therapy (ASTCT) grading system to other grading scores in 2 populations of adults: patients (n = 53) with B-cell acute lymphoblastic leukemia (B-ALL) treated with 1928z CAR T-cells (clinicaltrials.gov #NCT01044069), and patients (n = 49) with diffuse large B-cell lymphoma (DLBCL) treated with axicabtagene-ciloleucel (axi-cel) or tisagenlecleucel after US Food and Drug Administration approval. According to ASTCT grading, 82% of patients had CRS, 87% in the B-ALL and 77% in the DLBCL groups (axi-cel: 86%, tisagenlecleucel: 54%), whereas 50% of patients experienced ICANS, 55% in the B-ALL and 45% in the DLBCL groups (axi-cel: 55%, tisagenlecleucel: 15%). All grading systems agreed on CRS and ICANS diagnosis in 99% and 91% of cases, respectively. However, when analyzed grade by grade, only 25% and 54% of patients had the same grade in each system for CRS and ICANS, respectively, as different systems score symptoms differently (upgrading or downgrading their severity), leading to inconsistent final grades. Investigation of possible management implications in DLBCL patients showed that different recommendations on tocilizumab and steroids across current guidelines potentially result in either overtreating or delaying treatment. Moreover, because these guidelines are based on single products and different grading systems, they cannot be universally applied. To avoid discrepancies in assessing and managing toxicities of different products, we propose that unified grading be used across clinical trials and in practice and that paired management guidelines with product-specific indications be developed.


Assuntos
Linfoma Difuso de Grandes Células B , Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Adulto , Síndrome da Liberação de Citocina , Humanos , Linfócitos T
4.
Nat Neurosci ; 17(9): 1180-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25108912

RESUMO

Macroautophagy (hereafter autophagy) is a key pathway in neurodegeneration. Despite protective actions, autophagy may contribute to neuron demise when dysregulated. Here we consider X-linked spinal and bulbar muscular atrophy (SBMA), a repeat disorder caused by polyglutamine-expanded androgen receptor (polyQ-AR). We found that polyQ-AR reduced long-term protein turnover and impaired autophagic flux in motor neuron-like cells. Ultrastructural analysis of SBMA mice revealed a block in autophagy pathway progression. We examined the transcriptional regulation of autophagy and observed a functionally significant physical interaction between transcription factor EB (TFEB) and AR. Normal AR promoted, but polyQ-AR interfered with, TFEB transactivation. To evaluate physiological relevance, we reprogrammed patient fibroblasts to induced pluripotent stem cells and then to neuronal precursor cells (NPCs). We compared multiple SBMA NPC lines and documented the metabolic and autophagic flux defects that could be rescued by TFEB. Our results indicate that polyQ-AR diminishes TFEB function to impair autophagy and promote SBMA pathogenesis.


Assuntos
Autofagia/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Transtornos Musculares Atróficos/patologia , Peptídeos/metabolismo , Receptores Androgênicos/metabolismo , Animais , Reprogramação Celular/fisiologia , Modelos Animais de Doenças , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Transtornos Musculares Atróficos/metabolismo , Fagossomos/fisiologia
5.
Neurobiol Dis ; 43(1): 46-51, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20887789

RESUMO

Macroautophagy is a cellular process by which cytosolic components and organelles are degraded in double-membrane bound structures upon fusion with lysosomes. A pathway for selective degradation of mitochondria by autophagy, known as mitophagy, has been described, and is of particular importance to neurons, because of the constant need for high levels of energy production in this cell type. Although much remains to be learned about mitophagy, it appears that the regulation of mitophagy shares key steps with the macroautophagy pathway, while exhibiting distinct regulatory steps specific for mitochondrial autophagic turnover. Mitophagy is emerging as an important pathway in neurodegenerative disease, and has been linked to the pathogenesis of Parkinson's disease through the study of recessively inherited forms of this disorder, involving PINK1 and Parkin. Recent work indicates that PINK1 and Parkin together maintain mitochondrial quality control by regulating mitophagy. In the Purkinje cell degeneration (pcd) mouse, altered mitophagy may contribute to the dramatic neuron cell death observed in the cerebellum, suggesting that over-active mitophagy or insufficient mitophagy can both be deleterious. Finally, mitophagy has been linked to aging, as impaired macroautophagy over time promotes mitochondrial dysfunction associated with the aging process. Understanding the role of mitophagy in neural function, neurodegenerative disease, and aging represents an essential goal for future research in the autophagy field. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."


Assuntos
Envelhecimento/patologia , Autofagia/fisiologia , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Envelhecimento/fisiologia , Animais , Humanos , Mitocôndrias/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/fisiologia
6.
Proc Natl Acad Sci U S A ; 107(2): 742-7, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20080745

RESUMO

Autophagy is a catabolic pathway that is important for turnover of long-lived proteins and organelles, and has been implicated in cell survival, tumor progression, protection from infection, neurodegeneration, and cell death. Autophagy and caspases are required for type II autophagic cell death of Drosophila larval salivary glands during development, but the mechanisms that regulate these degradation pathways are not understood. We conducted a forward genetic screen for genes that are required for salivary gland cell death, and here we describe the identification of Drosophila dynein light chain 1 (ddlc1) as a gene that is required for type II cell death. Autophagy is attenuated in ddlc1 mutants, but caspases are active in these cells. ddlc1 mutant salivary glands develop large fibrillar protein inclusions that stain positive for amyloid-specific dyes and ubiquitin. Ectopic expression of Atg1 is sufficient to induce autophagy, clear protein inclusions, and rescue degradation of ddlc1 mutant salivary glands. Furthermore, ddlc1 mutant larvae have decreased motility, and mutations in ddlc1 enhance the impairment of motility that is observed in a Drosophila model of neurodegenerative disease. Significantly, this decrease in larval motility is associated with decreased clearance of protein with polyglutamine expansion, the accumulation of p62 in neurons and muscles, and fewer synaptic boutons. These results indicate that DDLC1 is required for protein clearance by autophagy that is associated with autophagic cell death and neurodegeneration.


Assuntos
Autofagia/genética , Dineínas do Citoplasma/genética , Proteínas de Drosophila/genética , Drosophila/fisiologia , Animais , Animais Geneticamente Modificados , Caspases/genética , Caspases/metabolismo , Morte Celular/genética , Sequência Conservada , Cruzamentos Genéticos , DNA/genética , Drosophila/citologia , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Marcação In Situ das Extremidades Cortadas , Larva/genética , Mutagênese Insercional , Mutação , Degeneração Neural/genética , Pupa/genética , Glândulas Salivares/patologia , Glândulas Salivares/fisiologia , Sinapses/fisiologia
7.
Autophagy ; 3(6): 643-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17912024

RESUMO

The two major intracellular catabolic pathways, the ubiquitin-proteasome system (UPS) and macroautophagy (autophagy), have each been implicated as playing roles in neurodegenerative proteinopathies. We have investigated the relationship between the UPS and autophagy using Drosophila models of neurodegenerative diseases. We identified histone deacetylase 6 (HDAC6) as a genetic modifier of polyglutamine-induced neurodegeneration and determined that its mechanism of action is autophagy-dependent. The ability of HDAC6 to suppress degeneration has been extended to additional neurodegenerative disease models, including a fly model expressing pathological Abeta fragments, presented here, but is not a universal modifier of degenerative phenotypes. Importantly, HDAC6 was also found to suppress degeneration associated with proteasome mutations in an autophagy-dependent manner, revealing a compensatory relationship between these two degradation pathways. Our findings indicate that HDAC6 facilitates degradation of potentially noxious protein substrates, contributing vitally to the neuroprotective role of autophagy.


Assuntos
Autofagia/fisiologia , Proteínas de Drosophila/metabolismo , Histona Desacetilases/metabolismo , Degeneração Neural/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Autofagia/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Desacetilase 6 de Histona , Humanos , Mutação , Degeneração Neural/genética , Complexo de Endopeptidases do Proteassoma/genética
8.
Nature ; 447(7146): 859-63, 2007 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-17568747

RESUMO

A prominent feature of late-onset neurodegenerative diseases is accumulation of misfolded protein in vulnerable neurons. When levels of misfolded protein overwhelm degradative pathways, the result is cellular toxicity and neurodegeneration. Cellular mechanisms for degrading misfolded protein include the ubiquitin-proteasome system (UPS), the main non-lysosomal degradative pathway for ubiquitinated proteins, and autophagy, a lysosome-mediated degradative pathway. The UPS and autophagy have long been viewed as complementary degradation systems with no point of intersection. This view has been challenged by two observations suggesting an apparent interaction: impairment of the UPS induces autophagy in vitro, and conditional knockout of autophagy in the mouse brain leads to neurodegeneration with ubiquitin-positive pathology. It is not known whether autophagy is strictly a parallel degradation system, or whether it is a compensatory degradation system when the UPS is impaired; furthermore, if there is a compensatory interaction between these systems, the molecular link is not known. Here we show that autophagy acts as a compensatory degradation system when the UPS is impaired in Drosophila melanogaster, and that histone deacetylase 6 (HDAC6), a microtubule-associated deacetylase that interacts with polyubiquitinated proteins, is an essential mechanistic link in this compensatory interaction. We found that compensatory autophagy was induced in response to mutations affecting the proteasome and in response to UPS impairment in a fly model of the neurodegenerative disease spinobulbar muscular atrophy. Autophagy compensated for impaired UPS function in an HDAC6-dependent manner. Furthermore, expression of HDAC6 was sufficient to rescue degeneration associated with UPS dysfunction in vivo in an autophagy-dependent manner. This study suggests that impairment of autophagy (for example, associated with ageing or genetic variation) might predispose to neurodegeneration. Morover, these findings suggest that it may be possible to intervene in neurodegeneration by augmenting HDAC6 to enhance autophagy.


Assuntos
Autofagia/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histona Desacetilases/metabolismo , Doenças Neurodegenerativas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Autofagia/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Desacetilase 6 de Histona , Humanos , Transtornos Musculares Atróficos/genética , Transtornos Musculares Atróficos/metabolismo , Doenças Neurodegenerativas/genética , Peptídeos/genética , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA