RESUMO
Nigella sativa (N. sativa; Ranunculaceae), commonly referred to as black cumin, is one of the most widely used medicinal plants worldwide, with its seeds having numerous applications in the pharmaceutical and food industries. With the emergence of antibiotic resistance in pathogens as an important health challenge, the need for alternative microbe-inhibitory agents is on the rise, whereby black cumin has gained considerable attention from researchers for its strong antimicrobial characteristics owing to its high content in a wide range of bioactive compounds, including thymoquinone, nigellimine, nigellidine, quercetin, and O-cymene. Particularly, thymoquinone increases the levels of antioxidant enzymes that counter oxidative stress in the liver. Additionally, the essential oil in N. sativa seeds effectively inhibits intestinal parasites and shows moderate activity against some bacteria, including Bacillus subtilis and Staphylococcus aureus. Thymoquinone exhibits minimum inhibitory concentrations (MICs) of 8-16 µg/mL against methicillin-resistant Staphylococcus aureus (MRSA) and exhibits MIC 0.25 µg/mL against drug-resistant mycobacteria. Similarly, quercetin shows a MIC of 2 mg/mL against oral pathogens, such as Streptococcus mutans and Lactobacillus acidophilus. Furthermore, endophytic fungi isolated from N. sativa have demonstrated antibacterial activity. Therefore, N. sativa is a valuable medicinal plant with potential for medicinal and food-related applications. In-depth exploration of the corresponding therapeutic potential and scope of industrial application warrants further research.
Assuntos
Anti-Infecciosos , Nigella sativa , Nigella sativa/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Testes de Sensibilidade Microbiana , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Bactérias/efeitos dos fármacos , Plantas Medicinais/química , Benzoquinonas/farmacologia , Benzoquinonas/química , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Antibacterianos/farmacologia , Antibacterianos/química , Sementes/químicaRESUMO
Background: Spondyloepiphyseal dysplasia (SED) is characterized by skeletal dysplasia and multiple joint dislocations. SEDs encompass various types, such as SED congenita, SED tarda (SED-T), SED with congenital joint dislocations (SED-CJD), SED stanescu, and SED-T with progressive arthropathy. Methods and Results: In the present study, we clinically and genetically characterized a consanguineous Pakistani family with SED-CJD. The affected member showed large joint dislocation, spinal deformities, and previously unreported facial features. Exome sequencing followed by Sanger sequencing revealed a missense variant, [c.601T>A; p.(Tyr201Asn)], in the CHST3. Conclusion: This study has not only expended the mutation spectrum in the gene CHST3 but also will facilitate diagnosis and genetic counseling of related features in the Pakistani population.
RESUMO
Neoadjuvant chemoradiotherapy can enhance survival rate of patients with advanced rectal cancer, but its effectiveness varies considerably. Previous studies have indicated that gut microbes may serve as biomarkers for predicting treatment efficacy. However, the specific roles of the gut microbiome in patients who have good response to nCRT remains unclear. In this study, shotgun metagenomic sequencing technology was used to analyze the fecal microbiome of patients with varying responses to nCRT. Our findings revealed that beneficial intestinal bacteria and genes from different metabolic pathways (carbohydrate metabolism, amino acid metabolism, and sulfur metabolism) were significantly enriched in patients with good response. Additionally, causal relationship in which microbial-derived GDP-D-rhamnose and butyrate could influence the response to nCRT was clarified. Our results offered new insights into the different response to nCRT, and provided valuable reference points for improving the effectiveness of nCRT in patients with advanced colorectal cancer.
RESUMO
BACKGROUND: Child sexual abuse is a universal social challenge and the victims of childhood sexual abuse suffer a range of short and long term psychological, social, behavioral and physical problems that vary in different cultures. The study was carried out to explore the perceived impacts of childhood sexual abuse in Pakistan, because no such study was conducted in Pakistan earlier. METHODS: Interpretative phenomenological analysis was used to analyze the data. A snowball sampling technique was used to approach the sample of current study. The sample of the study comprised ten female survivors of childhood sexual abuse of age ranged between 18 and 22 years (Mage= 20.10 years) with the education ranging from matric to BSc. Out of these participants, four were married and six were unmarried and belonged to different cities of Punjab, Pakistan. Data were collected via a semi-structured interview schedule and all interviews were verbatim transcribed. RESULTS: A rigorous iterative process of data analysis resulted in three super-ordinate themes and ten sub-ordinate themes: Experiencing Abuse (emotional trauma, and physical distress), Psycho-social Distress (low self-esteem, negative self-concept, psychological pain, social suffering, and retaliation vs. forgiveness), and Sexual Difficulties (passive role, emotionally aloof, aversion from hetero-sexuality and avoidance). CONCLUSION: It was concluded that childhood sexual abuse is an intense experience that has short- and long-term negative impacts on the lives of female survivors and engulfs their lives as a whole. The study has implications for psychiatrists, psychologists, family counselors, social scientists, educationists, and parents.
Assuntos
Sobreviventes Adultos de Maus-Tratos Infantis , Abuso Sexual na Infância , Humanos , Feminino , Paquistão , Adolescente , Adulto Jovem , Sobreviventes Adultos de Maus-Tratos Infantis/psicologia , Abuso Sexual na Infância/psicologia , Adulto , Autoimagem , Pesquisa Qualitativa , Criança , Estresse Psicológico/psicologia , Angústia PsicológicaRESUMO
Glioma represents the most common central nervous system neoplasm in adults. Current classification scheme utilizes molecular alterations, particularly IDH1.R132H, to stratify lesions into distinct prognostic groups. Identification of the single nucleotide variant through traditional tissue biopsy assessment poses procedural risks and does not fully reflect the heterogeneous and evolving tumor landscape. Here, we introduce a liquid biopsy assay, mt-IDH1dx. The blood-based test allows minimally invasive detection of tumor-derived extracellular vesicle RNA using only 2 ml plasma volume. We perform rigorous, blinded validation testing across the study population (n = 133), comprising of IDH1.R132H patients (n = 80), IDH1 wild-type gliomas (n = 44), and age matched healthy controls (n = 9). Results from our plasma testing demonstrate an overall sensitivity of 75.0% (95% CI: 64.1%-84.0%), specificity 88.7% (95% CI: 77.0%-95.7%), positive predictive value 90.9%, and negative predictive value 70.1% compared to the tissue gold standard. In addition to fundamental diagnostic applications, the study also highlights the utility of mt-IDH1dx platform for blood-based monitoring and surveillance, offering valuable prognostic information. Finally, the optimized workflow enables rapid and efficient completion of both tumor tissue and plasma testing in under 4 hours from the time of sampling.
Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Mutação , Humanos , Isocitrato Desidrogenase/genética , Glioma/genética , Glioma/sangue , Glioma/diagnóstico , Glioma/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Biópsia Líquida/métodos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/diagnóstico , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Sensibilidade e Especificidade , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Estudos de Casos e ControlesRESUMO
The present study aims to develop Asphaltum punjabianum (namely Shilajit) coated Polyvinyl alcohol (PVA)/Carboxymethyl cellulose (CMC) hydrogels and examine their structural, morphological, degradation, and biological properties. Hydrogels were produced at two different concentrations: 70:30 PVA/CMC and 90:10 PVA/CMC. Following that, Shilajit was applied to the synthesized hydrogels using electrophoretic deposition for a duration of 3 min at 30 V. The scanning electron microscopy images showed that the hydrogel's surface had a regular distribution of irregular Shilajit particles. Fourier transform infrared spectroscopy (FTIR) analysis demonstrated the presence of hydrogen bonding between PVA and CMC hydrogels and Shilajit, indicating the successful deposition of Shilajit on the hydrogel. The hydrogels coated with Shilajit exhibited strong antimicrobial activity, resulting in an inhibition zone measuring 34 mm against Escherichia coli (E. coli) and 41 mm against Staphylococcus aureus (S. aureus). The hydrogels exhibited a cell viability of 80 % with mesenchymal stem cells (MSCs), and the release of collagen II also increased. Furthermore, the PVA/CMC/Shilajit hydrogel exhibited a lower degradation rate compared to the PVA/CMC hydrogel. The results of the swelling, degradation, and drug release studies indicate that the shilajit coating is appropriate for the long-term process of tissue and cartilage regeneration.
Assuntos
Carboximetilcelulose Sódica , Hidrogéis , Álcool de Polivinil , Staphylococcus aureus , Álcool de Polivinil/química , Carboximetilcelulose Sódica/química , Hidrogéis/química , Hidrogéis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Sobrevivência Celular/efeitos dos fármacos , Animais , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Metals are commonly used in bone implants due to their durability and load-bearing capabilities, yet they often suffer from biofilm growth and corrosion. To overcome these challenges, implants with enhanced biocompatibility, bioactivity, and antimicrobial properties are preferred. Stainless steel (SS) implants are widely favored in orthopedics for their mechanical strength and cost-effectiveness. To address the issues related to SS implants, we developed composite coatings using synthetic biopolymer polyvinyl alcohol (PVA), calcium hydrate (C-H) nanorods for improved bioactivity and antibacterial properties, and Moringa oleifera to enhance osteogenic induction. These coatings were deposited on 316L SS through electrophoretic deposition (EPD), providing protection against body fluids and enhancing the corrosion resistance of the SS. X-ray diffraction (XRD) confirmed the presence of the desired tobermorite crystal structure, while scanning electron microscopy (SEM) revealed nanorod-like C-H structures, a film thickness of 29 microns, and a hedgehog-like morphology in the composite particles. The coated sample demonstrated a contact angle of 64°, optimal for protein attachment and cellular uptake. Additionally, the coating exhibited strong adhesion with less than 5% damage observed in cross-cut hatch testing and appropriate surface roughness for protein attachment. Differential Scanning Calorimetry (DSC) and thermogravimetric analysis (TGA) assessed the thermal response of the materials. The coating also showed antibacterial activity against both Gram-negative and Gram-positive bacteria. Furthermore, the sample exhibited rapid bioactivity by forming a hydroxyapatite (HA) layer within 24 hours, with 35.4% degradability within 24 hours and 44.5% within 48 hours. These findings confirm that the composite film enhances the biocompatibility, bioactivity, and antibacterial properties of SS orthopedic implants in a cost-effective manner.
RESUMO
Regenerative medicine, encompassing various therapeutic approaches aimed at tissue repair and regeneration, has emerged as a promising field in the realm of physical therapy. Aim: This comprehensive review seeks to explore the evolving role of regenerative medicine within the domain of physical therapy, highlighting its potential applications, challenges, and current trends. Researchers selected publications of pertinent studies from 2015 to 2024 and performed an exhaustive review of electronic databases such as PubMed, Embase, and Google Scholar using the targeted keywords "regenerative medicine", "rehabilitation", "tissue repair", and "physical therapy" to screen applicable studies according to preset parameters for eligibility, then compiled key insights from the extracted data. Several regenerative medicine methods that are applied in physical therapy, in particular, stem cell therapy, platelet-rich plasma (PRP), tissue engineering, and growth factor treatments, were analyzed in this research study. The corresponding efficacy of these methods in the recovery process were also elaborated, including a discussion on facilitating tissue repair, alleviating pain, and improving functional restoration. Additionally, this review reports the challenges concerning regenerative therapies, among them the standardization of protocols, safety concerns, and ethical issues. Regenerative medicine bears considerable potential as an adjunctive therapy in physiotherapy, providing new pathways for improving tissue repair and functional results. Although significant strides have been made in interpreting the potential of regenerative techniques, further research is warranted to enhance protocols, establish safety profiles, and increase access and availability. Merging regenerative medicine into the structure of physical therapy indicates a transformative alteration in clinical practice, with the benefit of increasing patient care and improving long-term results.
Assuntos
Modalidades de Fisioterapia , Medicina Regenerativa , Humanos , Medicina Regenerativa/métodos , Medicina Regenerativa/tendências , Medicina Regenerativa/normas , Plasma Rico em Plaquetas , Doenças Musculoesqueléticas/terapia , Engenharia Tecidual/métodosRESUMO
In the present study, we prepared magnetite nanoparticles (MNPs) loaded with natural Moringa oleifera (M. olf) herb and Epilim (Ep) drug to evaluate the anti-cancerous activity against brain cancer cells. All the samples were prepared via co-precipitation approach modified with different concentrations of M. olf and Ep drug at room temperature. The MNPs loaded with drug and natural herb were studied in terms of crystal structure, morphology, colloidal stability, size distribution, and magnetic properties. Field emission scanning electron microscopy (FESEM) images exhibited the morphologies of samples with spherical shape as well as the particles size of 9 nm for MNPs and up to 23 nm for its composites. The results of vibrating sample magnetometer (VSM) indicated the magnetization saturation (Ms) of 42.510 emu/g for MNPs. This value reduced to 16-35 emu/g upon loading MNPs with different concentrations of M. olf and Ep. Fourier transform infrared spectroscopy (FTIR) indicated the chemical interaction between the Ep, M.olf and MNPs. Brunauer-Emmett-Teller (BET) analysis confirmed the largest surface area for MNPs (422.61 m2/g) which gradually reduced on addition of M. olf and Ep indicating the successful loading. The zeta potential measurements indicated that the MNPs and MNPs loaded with M. olf and Ep are negatively charged and can be dispersed in the suspension. Furthermore, U87 human glioblastoma cell line was used for the in vitro cellular studies to determine the efficacy of synthesized MNPs against cancer cells. The results confirmed the anti-proliferative activity of the MNPs loaded with M. olf and Ep.
RESUMO
BACKGROUND: The radiation released at the time of dental panoramic radiographs causes genotoxic and cytotoxic effects on epithelial cells. OBJECTIVE: This research aimed to evaluate the changes in the frequencies of micronucleated cells in patients' buccal epithelial cells following dental panoramic radiography. METHODS: 74 patients were recruited for the study who were advised for panoramic radiographs. Using a wooden spatula, the buccal epithelial cells were scraped from both cheeks before to panoramic radiation exposure and ten days after the panoramic radiation exposure. Giemsa stain was used to stain the cells, and 500 cells were scored on a slide to determine the frequency of micronuclei. To determine the difference between the frequency of micronuclei before and after radiation exposure, a paired t-test was used in the statistical analysis. RESULTS: The proportion of micronuclei cells was 0.11% before radiation exposure and 0.57% following radiation exposure after 10 days. A statistically significant increase in the frequencies of micronuclei was noted after radiation exposure values. CONCLUSION: This study revealed the genotoxicity of epithelial cells with dental panoramic radiation exposure. It is advised to reduce the use of such radiographs and to use only when there is no other diagnostic tool that is helpful or when absolutely essential.
Assuntos
Células Epiteliais , Testes para Micronúcleos , Mucosa Bucal , Radiografia Panorâmica , Humanos , Radiografia Panorâmica/efeitos adversos , Mucosa Bucal/efeitos da radiação , Mucosa Bucal/diagnóstico por imagem , Mucosa Bucal/citologia , Masculino , Feminino , Células Epiteliais/efeitos da radiação , Adulto , Pessoa de Meia-Idade , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Adulto JovemRESUMO
Early diagnosis of post-traumatic osteoarthritis (PTOA) is critical for designing better treatments before the degradation becomes irreversible. We utilized multimodal high-resolution imaging to investigate early-stage deterioration in articular cartilage and the subchondral bone plate from a sub-critical impact to the knee joint, which initiates PTOA. The knee joints of 12 adult rabbits were mechanically impacted once on the femoral articular surface to initiate deterioration. At 2- and 14-week post-impact surgery, cartilage-bone blocks were harvested from the impact region in the animals (N = 6 each). These blocks were assessed for deterioration using polarized light microscopy (PLM), microcomputed tomography (µCT), and biochemical analysis. Statistically significant changes were noted in the impact tissues across the calcified zone (CZ) at 14 weeks post-impact: the optical retardation values in the CZ of impact cartilage had a drop of 29.0% at 14 weeks, while the calcium concentration in the CZ of impact cartilage also had a significant drop at 14 weeks. A significant reduction of 6.3% in bone mineral density (BMD) was noted in the subchondral bone plate of the impact samples at 14 weeks. At 2 weeks post-impact, only minor, non-significant changes were measured. Furthermore, the impact knees after 14 weeks had greater structural changes compared with the 2-week impact knees, indicating progressive degradation over time. The findings of this study facilitated a connection between mineralization alterations and the early deterioration of knee cartilage after a mechanical injury. In a broader context, these findings can be beneficial in improving clinical strategies to manage joint injuries.
Assuntos
Cartilagem Articular , Microtomografia por Raio-X , Animais , Coelhos , Cartilagem Articular/patologia , Cartilagem Articular/diagnóstico por imagem , Traumatismos do Joelho/diagnóstico por imagem , Traumatismos do Joelho/patologia , Densidade Óssea/fisiologia , Articulação do Joelho/patologia , Articulação do Joelho/diagnóstico por imagem , Microscopia de PolarizaçãoRESUMO
Gas separation membranes are critical in a variety of environmental research and industrial applications. These membranes are designed to selectively allow some gases to flow while blocking others, allowing for the separation and purification of gases for a variety of applications. Therefore, the demand for fast and energy-efficient gas separation techniques is of central interest for many chemical and energy production diligences due to the intensified levels of greenhouse and industrial gases. This encourages the researchers to innovate techniques for capturing and separating these gases, including membrane separation techniques. Polymeric membranes play a significant role in gas separations by capturing gases from the fuel combustion process, purifying chemical raw material used for plastic production, and isolating pure and noncombustible gases. Polyurethane-based membrane technology offers an excellent knack for gas separation applications and has also been considered more energy-efficient than conventional phase change separation methodologies. This review article reveals a thorough delineation of the current developments and efforts made for PU membranes. It further explains its uses for the separation of valuable gases such as carbon dioxide (CO2), hydrogen (H2), nitrogen (N2), methane (CH4), or a mixture of gases from a variety of gas spillages. Polyurethane (PU) is an excellent choice of material and a leading candidate for producing gas-separating membranes because of its outstanding chemical chemistry, good mechanical abilities, higher permeability, and variable microstructure. The presence of PU improves several characteristics of gas-separating membranes. Selectivity and separation efficiency of PU-centered membranes are enhanced through modifications such as blending with other polymers, use of nanoparticles (silica, metal oxides, alumina, zeolite), and interpenetrating polymer networks (IPNs) formation. This manuscript critically analyzes the various gas transport methods and selection criteria for the fabrication of PU membranes. It also covers the challenges facing the development of PU-membrane-based separation procedures.
Assuntos
Gases , Membranas Artificiais , Poliuretanos , Poliuretanos/química , Gases/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/químicaRESUMO
Background and objectives: Non-alcoholic fatty liver disease (NAFLD) is characterized by ectopic deposition of fat in the liver, in the absence of other secondary causes of fat buildup. The relationship between NAFLD, including alanine aminotransferase (ALT), and glycated haemoglobin (HbA1c), is important for predicting the severity of disease and prognosis. This study aims to investigate the association of HbA1c in type 2 diabetes mellitus (T2DM) patients with NAFLD via measuring the ALT levels. Materials and methods: This retrospective cross-sectional study enroled 130 patients with T2DM and NAFLD. The association between levels of HbA1c and ALT in patients of NAFLD with controlled and uncontrolled T2DM, respectively, was investigated. Stratification was done based on gender and diabetic control, using HbA1c levels as a marker of glycemic control. Serum ALT levels were also compared in both groups. Results: The mean age of the participants was 50.2±5.7 years. The total participants were 130, of which 77 (59.3%) were females and 53 (40.7%) were males. The numbers of patients having uncontrolled T2DM (HbA1c>7%), and controlled T2DM (HbA1c <7%) were 78 (60%) and 52 (40%), respectively. Moreover, 46 (35.3%) females and 32 (24.7%) males had uncontrolled T2DM, and 31 (23.8%) females and 21 (16.2%) males had controlled T2DM. The mean ALT level for uncontrolled and controlled T2DM in female patients was found to be 24.6±3.4 and 13.5±2.4, respectively, (P <0.05). For male patients, it was found to be 54.0±4.9 and 29.1±5.4, respectively (P=0.008). Conclusion: There is a positive association between elevated HbA1c and ALT levels in T2DM patients with NAFLD.
RESUMO
Resveratrol, a natural polyphenol in various plants, has gained significant attention for its potential health-promoting properties. It has been demonstrated, after reviewing various clinical and in vitro studies, that resveratrol possesses potent antioxidant potential. Resveratrol demonstrates cellular component protection by directly neutralizing free radicals (FRs) and enhancing the expression of natural antioxidant enzymes, thereby mitigating oxidative damage to proteins, lipids, and nucleic acids. Clinical trials have shown promising results, indicating that resveratrol supplementation can enhance antioxidant defenses and reduce oxidative damage markers in various populations. In addition to its antioxidant effects, resveratrol exhibits potent anti-inflammatory properties. It can modulate key inflammatory pathways, such as nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs), thereby suppressing the production of pro-inflammatory cytokines and chemokines. Furthermore, resveratrol's multimodal effects extend beyond its antioxidant and anti-inflammatory properties. It has been discovered to exert regulatory effects on various cellular processes, including apoptosis, cell cycle progression, angiogenesis, and immunological responses. The primary aim of this review paper is to provide a thorough overview of the current knowledge on resveratrol, including its chemical composition, bioaccessibility, clinical effectiveness, and utilization in nanotechnology to enhance its bioavailability. From future perspectives, revising the administration methods for certain contexts and understanding the underlying systems responsible for resveratrol's effects will require further inquiry. For the highest potential health results, advanced trial-based research is necessary for combinational nano-delivery of resveratrol.
RESUMO
BACKGROUND: Postpartum women often experience stress urinary incontinence (SUI) and vaginal microbial dysbiosis, which seriously affect women's physical and mental health. Understanding the relationship between SUI and vaginal microbiota composition may help to prevent vaginal diseases, but research on the potential association between these conditions is limited. RESULTS: This study employed 16S rRNA gene sequencing to explore the association between SUI and vaginal dysbiosis. In terms of the vaginal microbiota, both species richness and evenness were significantly higher in the SUI group. Additionally, the results of NMDS and species composition indicated that there were differences in the composition of the vaginal microbiota between the two groups. Specifically, compared to postpartum women without SUI (Non-SUI), the relative abundance of bacteria associated with bacterial dysbiosis, such as Streptococcus, Prevotella, Dialister, and Veillonella, showed an increase, while the relative abundance of Lactobacillus decreased in SUI patients. Furthermore, the vaginal microbial co-occurrence network of SUI patients displayed higher connectivity, complexity, and clustering. CONCLUSION: The study highlights the role of Lactobacillus in maintaining vaginal microbial homeostasis. It found a correlation between SUI and vaginal microbiota, indicating an increased risk of vaginal dysbiosis. The findings could enhance our understanding of the relationship between SUI and vaginal dysbiosis in postpartum women, providing valuable insights for preventing bacterial vaginal diseases and improving women's health.
Assuntos
Microbiota , Incontinência Urinária por Estresse , Doenças Vaginais , Feminino , Humanos , Incontinência Urinária por Estresse/etiologia , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Vagina/microbiologia , Microbiota/genética , Lactobacillus/genética , Bactérias/genética , Doenças Vaginais/complicaçõesRESUMO
Background: The rapidly rising average age of the older adults has brought various global healthcare challenges. A core challenge is how to enhance their quality of life (QoL). Objective: The objective of the current study was to test the significance of biopsychosocial determinants of quality of life of older adults in Pakistan and Canada. Methodology: A cross-sectional survey was carried out on a conveniently approached purposive sample of 1,005 older adults (Pakistani = 557 and Canadian = 448) of age range between 60 years and 80 years. The data were collected via demographic datasheet, World Health Organization Quality of Life Brief Scale, Health and Lifestyle Questionnaire, General Self-Efficacy Scale, Rosenberg Self-Esteem Scale, and Berlin Social Support Scale. Results: The results of hierarchical regression analysis showed that biopsychosocial factors (viz., health and lifestyle, chronic illness, self-efficacy, self-esteem, and social support) significantly predicted (R 2 = .27, and.68) quality of life of older adults in Pakistan and Canada, respectively, after controlling the demographic variables. Significant differences were found between Pakistani and Canadian older adults on biopsychosocial factors: Canadian older adults scored significantly higher on health and lifestyle, self-efficacy, and quality of life, and older adults in Pakistan scored significantly higher on self-esteem and social support. Conclusion: A significant amount of better QoL of older adults can be achieved through enhancing the biopsychosocial correlates of their QoL, both in Pakistan and Canada.
RESUMO
Modulatory effects of serotonin (5-Hydroxytryptamine [5-HT]) have been seen in hepatic, neurological/psychiatric, and gastrointestinal (GI) disorders. Probiotics are live microorganisms that confer health benefits to their host. Recent research has suggested that probiotics can promote serotonin signaling, a crucial pathway in the regulation of mood, cognition, and other physiological processes. Reviewing the literature, we find that peripheral serotonin increases nutrient uptake and storage, regulates the composition of the gut microbiota, and is involved in mediating neuronal disorders. This review explores the mechanisms underlying the probiotic-mediated increase in serotonin signaling, highlighting the role of gut microbiota in the regulation of serotonin production and the modulation of neurotransmitter receptors. Additionally, this review discusses the potential clinical implications of probiotics as a therapeutic strategy for disorders associated with altered serotonin signaling, such as GI and neurological disorders. Overall, this review demonstrates the potential of probiotics as a promising avenue for the treatment of serotonin-related disorders and signaling of serotonin.
RESUMO
PURPOSE: Degradation of articular cartilage (AC) due to injury to the knee joint may initiate post-traumatic osteoarthritis (PTOA). Failure to diagnose the onset of the disease at an early stage makes the cure ineffective for PTOA. This study investigated the consequences of a mechanical injury to the knee in a rabbit model using microscopic magnetic resonance imaging (µMRI) at high resolution. MATERIALS AND METHODS: A mechanical injury was induced to the knee joints of 12 rabbits. Cartilage blocks were extracted from the non-impacted and impacted knee joints after 2 and 14 weeks post-impact. The specimens were studied using µMRI T2 relaxation and inductively coupled plasma analysis to determine the early degradation of the articular cartilage. RESULTS: The data established a connection between T2 relaxation time and the early progression of knee PTOA after an impact injury. T2 values were found to be higher in the impacted cartilage at both 2 and 14 weeks, in particular, T2-55° values in the impacted samples displayed a significant rise of 6.93% after 2 weeks and 20.02% after 14 weeks. Lower glycosaminoglycan measurement and higher water content in the impacted cartilage confirmed the µMRI results. CONCLUSIONS: This µMRI T2 study was able to detect cartilage damage in the impacted knees. In addition, greater degradation in the affected knees at 14 weeks than at 2 weeks indicated the progressive nature of cartilage deterioration over time. The µMRI results were in accord with the biochemical analysis, indicating the detection of early structural damage in the cartilage.
Assuntos
Cartilagem Articular , Osteoartrite , Animais , Coelhos , Cartilagem Articular/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Modelos Animais de DoençasRESUMO
Layered semiconductors of the V-VI group have attracted considerable attention in optoelectronic applications owing to their atomically thin structures. They offer thickness-dependent optical and electronic properties, promising ultrafast response time, and high sensitivity. Compared to the bulk, 2D bismuth selenide (Bi2Se3) is recently considered a highly promising material. In this study, 2D nanosheets are synthesized by prolonged sonication in two different solvents, such as N-methyl-2-pyrrolidone (NMP) and chitosan-acetic acid solution (CS-HAc), using the liquid-phase exfoliation (LPE) method. X-ray diffraction confirms the amorphous nature of exfoliated 2D nanosheets with maximum peak intensity at the same position (015) crystal plane as that obtained in its bulk counterpart. SEM confirms the thin 2D nanosheet-like morphology. Successful exfoliation of Bi2Se3 nanosheets up to five layers is achieved using CS-HAc solvent. The as-synthesized 2D nanosheets in different solvents are employed to fabricate the photodetector. At minimum selected power density, the photodetector fabricated using exfoliated ultrathin 2D nanosheets exhibits the highest range of responsivity, varying from 15 to 2.5 mA/W, and detectivity ranging from 2.83 × 109 to 6.37 × 107. Ultrathin 2D Bi2Se3 nanosheets have fast rise and fall times, ranging from 0.01 to 0.12 and 0.01 to 0.06 s, respectively, at different wavelengths. Ultrathin Bi2Se3 nanosheets have improved photodetection parameters as compared to multilayered nanosheets due to the high surface to volume ratio, reduced recombination and trapping of charge carrier, improved carrier confinement, and faster carrier transport due to the thin layer.
RESUMO
The mechanical response of articular cartilage (AC) under compression is anisotropic and depth-dependent. AC is osmotically active, and its intrinsic osmotic swelling pressure is balanced by its collagen fibril network. This mechanism requires the collagen fibers to be under a state of tensile pre-strain. A simple mathematical model is used to explain the depth-dependent strain calculations observed in articular cartilage under 1D axial compression (perpendicular to the articular surface). The collagen fibers are under pre-strain, influenced by proteoglycan concentration (fixed charged density, FCD) and collagen stiffness against swelling stress. The stiffness is introduced in our model as an anisotropic modulus that varies with fibril orientation through tissue depth. The collagen fibers are stiffer to stretching parallel to their length than perpendicular to it; when combined with depth-varying FCD, the model successfully predicts how tissue strains decrease with depth during compression. In summary, this model highlights that the mechanical properties of cartilage depend not only on proteoglycan concentration but also on the intrinsic properties of the pre-strained collagen network. These properties are essential for the proper functioning of articular cartilage.