Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(48): 10794-10802, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38013434

RESUMO

The interaction of water and polycyclic aromatic hydrocarbons is of fundamental importance in areas as diverse as materials science and atmospheric and interstellar chemistry. The interplay between hydrogen bonding and dipole-π interactions results in subtle dynamics that are challenging to describe from first principles. Here, we employ far-IR action vibrational spectroscopy with the infrared free-electron laser FELIX to investigate naphthalene with one to three water molecules. We observe diffuse bands associated with intermolecular vibrational modes that serve as direct probes of the loose binding of water to the naphthalene surface. These signatures are poorly reproduced by static DFT or Møller-Plesset computations. Instead, a rationalization is achieved through Born-Oppenheimer Molecular Dynamics simulations, revealing the active mobility of water over the surface, even at low temperatures. Therefore, our work provides direct insights into the wetting interactions associated with shallow potential energy surfaces while simultaneously demonstrating a solid experimental-computational framework for their investigation.

2.
Nanoscale ; 14(9): 3568-3578, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35179158

RESUMO

The bottom-up approach has been widely used for large-scale synthesis of carbon nanodots (CNDs). However, the structure and origin of photoluminescence in CNDs synthesized by the bottom-up approach is still a subject of debate. Here, using a series of separation techniques like solvent extraction, column chromatography, gel electrophoresis and dialysis, we present three distinct fluorescent components in CNDs synthesized from pyrene, a well-known precursor molecule. The separated components have qualitative and quantitatively different absorption and emission spectral features including quantum yield (QY). Optical and vibrational spectroscopy techniques combined with electron microscopy indicate that a subtle balance between the extent of graphitization and the presence of molecular fluorophores determines the nature of fluorescence emission. A substantial difference in photons/cycle, single-particle fluorescence blinking, ON-OFF photoswitching strongly supports the distinct nature of the components.

3.
Chem Sci ; 12(10): 3615-3626, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-34163635

RESUMO

The structure-function relationship, especially the origin of absorption and emission of light in carbon nanodots (CNDs), has baffled scientists. The multilevel complexity arises due to the large number of by-products synthesized during the bottom-up approach. By performing systematic purification and characterization, we reveal the presence of a molecular fluorophore, quinoxalino[2,3-b]phenazine-2,3-diamine (QXPDA), in a large amount (∼80% of the total mass) in red emissive CNDs synthesized from o-phenylenediamine (OPDA), which is one of the well-known precursor molecules used for CND synthesis. The recorded NMR and mass spectra tentatively confirm the structure of QXPDA. The close resemblance of the experimental vibronic progression and the mirror symmetry of the absorption and emission spectra with the theoretically simulated spectra confirm an extended conjugated structure of QXPDA. Interestingly, QXPDA dictates the complete emission characteristics of the CNDs; in particular, it showed a striking similarity of its excitation independent emission spectra with that of the original synthesized red emissive CND solution. On the other hand, the CND like structure with a typical size of ∼4 nm was observed under a transmission electron microscope for a blue emissive species, which showed both excitation dependent and independent emission spectra. Interestingly, Raman spectroscopic data showed the similarity between QXPDA and the dot structure thus suggesting the formation of the QXPDA aggregated core structure in CNDs. We further demonstrated the parallelism in trends of absorption and emission of light from a few other red emissive CNDs, which were synthesized using different experimental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA